Math, asked by vishnurajc2002, 11 months ago

Answer Please .......​

Attachments:

Answers

Answered by shadowsabers03
7

Given,

\longrightarrow\sf{f(x)=x^{\frac{1}{x}}}

Since \sf{a^b=e^{b\log a},}

\longrightarrow\sf{f(x)=e^{\frac{1}{x}\,\log x}}

Differentiating it with respect to \sf{x,}

\longrightarrow\sf{f'(x)=\dfrac{d}{dx}\,\left[e^{\frac{1}{x}\,\log x}\right]}

By chain rule,

\longrightarrow\sf{f'(x)=\dfrac{d\left[e^{\frac{1}{x}\,\log x}\right]}{d\left[\dfrac{1}{x}\,\log x\right]}\cdot\dfrac{d\left[\dfrac{1}{x}\,\log x\right]}{dx}}

Since \sf{\dfrac{d}{dx}\,\left[e^x\right]=e^x} and by product rule,

\longrightarrow\sf{f'(x)=e^{\frac{1}{x}\,\log x}\left[\dfrac{d}{dx}\left[\dfrac{1}{x}\right]\cdot\log x+\dfrac{1}{x}\cdot\dfrac{d}{dx}\left[\ln x\right]\right]}

\longrightarrow\sf{f'(x)=e^{\frac{1}{x}\,\log x}\left[-\dfrac{1}{x^2}\,\log x+\dfrac{1}{x^2}\right]}

\longrightarrow\sf{f'(x)=\dfrac{1}{x^2}\cdot e^{\frac{1}{x}\,\log x}\left[\,1-\log x\,\right]}

\longrightarrow\sf{f'(x)=\dfrac{1}{x^2}\cdot e^{\frac{1}{x}\,\log x}-\dfrac{1}{x^2}\cdot e^{\frac{1}{x}\,\log x}\cdot\log x}

Again differentiating,

\longrightarrow\sf{f''(x)=\dfrac{d}{dx}\,\left[\dfrac{1}{x^2}\cdot e^{\frac{1}{x}\,\log x}-\dfrac{1}{x^2}\cdot e^{\frac{1}{x}\,\log x}\cdot\log x\right]}

\longrightarrow\sf{f''(x)=\dfrac{d}{dx}\,\left[\dfrac{1}{x^2}\cdot e^{\frac{1}{x}\,\log x}\right]-\dfrac{d}{dx}\,\left[\dfrac{1}{x^2}\cdot e^{\frac{1}{x}\,\log x}\cdot\log x\right]}

Applying product rule,

\begin{aligned}\longrightarrow\sf{f''(x)}=&\sf{-\dfrac{2}{x^3}\cdot e^{\frac{1}{x}\,\log x}+\dfrac{1}{x^4}\cdot e^{\frac{1}{x}\,\log x}\left[\,1-\log x\,\right]+\dfrac{2}{x^3}\cdot e^{\frac{1}{x}\,\log x}\cdot\log x}\\\\&\sf{-\dfrac{1}{x^4}\,e^{\frac{1}{x}\,\log x}\cdot\log x\left[\,1-\log x\,\right]-\dfrac{1}{x^3}\,e^{\frac{1}{x}\,\log x}}\end{aligned}

\longrightarrow\sf{f''(x)=\dfrac{1}{x^4}\cdot e^{\frac{1}{x}\,\log x}\cdot\log x\left[\,1-\log x\,\right]^2-\dfrac{1}{x^3}\,e^{\frac{1}{x}\,\log x}\left[\,3-2\log x\,\right]}

Finding \sf{f''(e),}

\longrightarrow\sf{f''(e)=-\dfrac{e^{\frac{1}{e}}}{e^3}}

\longrightarrow\sf{\underline{\underline{f''(e)=-e^{\frac{1}{e}-3}}}}

Hence (d) is the answer.

Similar questions