Math, asked by deivayani1984, 3 months ago

answer please friends​

Attachments:

Answers

Answered by Anonymous
11

Given Equation

\sf\to 5x +\dfrac{1}{2} =7\bigg(x-\dfrac{7}{9} \bigg)-2

To find value x

Now take

\sf\to 5x +\dfrac{1}{2} =7\bigg(x-\dfrac{7}{9} \bigg)-2

Take LCM

\sf\to \dfrac{5x\times 2+1}{2} =7\bigg(\dfrac{9x-7}{9} \bigg)-2

\sf\to\dfrac{10x+1}{2} =\dfrac{7(9x-7)-2\times9}{9}

\sf\to \dfrac{10x+1}{2} =\dfrac{63x-49-18}{9}

\sf\to \dfrac{10x+1}{2} =\dfrac{63x-67}{9}

Now Using Cross multiplication

\sf\to 9(10x+1)=2(63x-67)

\sf\to 90x+9=126x-134

\sf\to 126x-90x=9+134

\sf\to 36x=143

\sf\to x=\dfrac{143}{36}

Answer

\sf\to x=\dfrac{143}{36}

Answered by Anonymous
81

Answer:

  \large \underline{\sf \pmb{Given}}

  : \implies \sf{ 5x +  \dfrac{1}{2}  = 7 \bigg(x -  \dfrac{7}{9}  \bigg) - 2}

  \large \underline{\sf \pmb{To  \: Find }}

  : \implies \sf{value \: of \: x}

  \large \underline{\sf \pmb{Solution}}

 : \implies \sf{ 5x +  \dfrac{1}{2}  = 7 \bigg(x -  \dfrac{7}{9}  \bigg) - 2}

  • ⇒ Take the LCM of denominators.

 {: \implies \sf{ \dfrac{(5x \times 2) + 1}{2}  = 7  \times  \bigg(\dfrac{(x \times 9 )- 7 - (2 \times 9)}{9} \bigg) }}

 {: \implies \sf{ \dfrac{10x+ 1}{2}  =\dfrac{( 9x \times 7) - (7 \times 7) - (2 \times 9)}{9} }}

{: \implies \sf{ \dfrac{10x+ 1}{2}  =\dfrac{63x- 49- 18}{9} }}

{: \implies \sf{ \dfrac{10x+ 1}{2}  =\dfrac{63x(- 49- 18)}{9} }}

{: \implies \sf{ \dfrac{10x+ 1}{2}  =\dfrac{63x-67}{9} }}

  • ⇒ By cross multiplication

{: \implies \sf{9 (10x+ 1)  = {2(63x-67)} }}

{: \implies \sf{ (90x+ 9)  = {(126x-134)} }}

  : \implies\sf{126x-90x=9+134}

 : \implies\sf{36x=143}

: \implies\sf{x= \dfrac{143}{36} }

  : \implies\red{ \boxed{\bf{x= \dfrac{143}{36} }}}

 \large \underline {\sf \pmb{Verification}}

{: \implies \sf{5x +  \dfrac{1}{2}  = 7 \bigg(x -  \dfrac{7}{9}  \bigg) - 2}}

  • ⇒ Substituting the values of "x".

{: \implies \sf{\dfrac{(5 \times  143)}{36}  +  \dfrac{1}{2}  = 7 \bigg( \dfrac{143}{36}  -  \dfrac{7}{9}  \bigg) - 2}}

{: \implies \sf \bigg({\dfrac{715}{36}  +  \dfrac{1}{2} \bigg) = 7 \bigg( \dfrac{143}{36}  -  \dfrac{7}{9}  \bigg) - 2}}

  • ⇒ Taking the LCM of denominators

{: \implies \sf {\dfrac{715 + (1 \times 18)}{36}   = 7   \times \bigg (\dfrac{143 -(7 \times 4) }{36} \bigg) -2 }}

{: \implies \sf {\dfrac{715 + 18}{36}   = 7   \times \bigg (\dfrac{143 -28 }{36} \bigg) - 2}}

{: \implies \sf {\dfrac{733}{36}   = 7   \times \bigg (\dfrac{115}{36} \bigg) - 2}}

{: \implies \sf {\dfrac{733}{36}    =   \bigg (\dfrac{7 \times 115}{36} \bigg) - 2}}

{: \implies \sf {\dfrac{733}{36}    =   \dfrac{805}{36} - 2}}

  • ⇒ Again takin the LCM of denominators

{: \implies \sf {\dfrac{733}{36}    =   \dfrac{805 - (2  \times 36)}{36} }}

{: \implies \sf {\dfrac{733}{36}    =   \dfrac{805 - 72}{36} }}

{: \implies \sf {\dfrac{733}{36}    =   \dfrac{773}{36} }}

{: \implies\red{ \boxed{\bf {LHS=RHS} }}}

  • {\sf \underline {Hence  \: Verified} \bf{\checkmark}}

Similar questions