Math, asked by dev7276, 10 months ago

answer property please don't Spam​

Attachments:

Answers

Answered by BrainlyTwinklingstar
71

Questíon :-

If the sum of a certain number of terms of the A.P. 25, 22, 19, .........is 116. Find the last term

Gíven :-

  • A.P = 25, 22, 19, ........
  • First term, a = 25
  • Common difference, d= 22 - 25 = -3

To Fínd :-

The last term of the given A.P.

Solutíon :-

 \sf sum \: of \: n \: terms =  \boxed{ \bf S_{n}  =  \frac{n}{2}(2a + (n - 1)d } \\

 :  \Longrightarrow \sf   \frac{n}{2} (50 + ( n- 1)( - 3) = 116 \\ \\    :  \Longrightarrow \sf  n(50 - 3n + 3) = 232  \\ \\  :  \Longrightarrow \sf  - 3 {n}^{2}  + 53n - 232 = 0  \\ \\  :  \Longrightarrow \sf   {3n}^{2}  - 53n + 232 = 0  \\ \\  :  \Longrightarrow \sf   {3n}^{2}  - 29n - 24n + 232 = 0  \\ \\  :  \Longrightarrow \sf   n(3n - 29) - 8(3n - 29) = 0  \\ \\  :  \Longrightarrow \sf   (n - 8)(3n - 29) = 0  \\ \\  :  \Longrightarrow \sf  n = 8(or)n =  \frac{29}{3}

\thereforen = 8

Last term =  \sf  T_{8}= a + (n - 1)d

= \sf  T_{8}= 25 + (7)(-3) = 25 - 22 = 4

Thus, last term of the given A.P is 4

Similar questions