Math, asked by vibhanshu8441, 1 year ago

answer question with photos​

Attachments:

Answers

Answered by Arunshah320
2

Step-by-step explanation:

...........................

Attachments:
Answered by Anonymous
7

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\boxed{\bf{(x - y)(x + y)( {x}^{2} +  {y}^{2})( {x}^{4} +  {y}^{4}) =  {x}^{8} -  {y}^{8} }}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

(x - y)(x + y)( {x}^{2} +  {y}^{2})( {x}^{4} +  {y}^{4})

 = ((x - y)(x + y))( {x}^{2} +  {y}^{2})( {x}^{4} +  {y}^{4})

We know that, (a - b)(a + b) = a² - b²

Here a = x, b = y

By substituting the values in the above identity we have,

 = ( {x}^{2} -  {y}^{2})( {x}^{2} +  {y}^{2})( {x}^{4} +  {y}^{4})

We know that, (a - b)(a + b) = a² - b²

Here a = x² , b = y²

By substituting the values in the above identity we have,

 =  ({( {x}^{2})}^{2} -  {( {y}^{2}) }^{2})( {x}^{4}  +  {y}^{4})

 = ( {x}^{2 \times 2}  -  {y}^{2 \times 2} )( {x}^{4} +  {y}^{4})

 = ( {x}^{4} -  {y}^{4})( {x}^{4} +  {y}^{4})

\tt{since \: {( {a}^{m}) }^{n}  =  {a}^{mn} }

We know that, (a - b)(a + b) = a² - b²

Here \sf{a =  {x}^{4} \: and \: b =  {y}^{4}}

By substituting the values in the above identity we have,

 =  {( {x}^{4})}^{2} -  {( {y}^{4}) }^{2}

\tt{since \: {( {a}^{m}) }^{n}  =  {a}^{mn} }

 =  {x}^{4 \times 2}  -  {y}^{4 \times 2}

 =  {x}^{8} -  {y}^{8}

\boxed{\bf{(x - y)(x + y)( {x}^{2} +  {y}^{2})( {x}^{4} +  {y}^{4}) =  {x}^{8} -  {y}^{8} }}

\mathfrak{\large{\underline{\underline{Identity\:Used:-}}}}

(a - b)(a + b) = a² - b²

\mathfrak{\large{\underline{\underline{Extra\:Information:-}}}}

[1] (x + y)² = x² + y² + 2xy

[2] (x - y)² = x² + y² - 2xy

[3] (x + y)(x - y) = x² - y²

[4] (x + a)(x + b) = x² + (a + b)x + ab

\bf{\large{\underline{\underline{Note:-}}}}

(x + y)(x - y) = x² - y² or (x - y)(x -

+ y) = x² - y² both are same.


vibhanshu8441: answer my qestion pls I had asked just now
vibhanshu8441: pls
vibhanshu8441: tharunpls
Similar questions