Math, asked by maggie59, 10 months ago

answer the above question​

Attachments:

Answers

Answered by thekings
3

Step-by-step explanation:

 \csc(90  +   \alpha )  + x \cos( \alpha )  \cot(90  +   \alpha )  =  \sin(90  +  \alpha ) \\  \\  \\  \sec( \alpha )   + x \cos( \alpha )(   - \tan( \alpha )  )=  \cos( \alpha )  \\  \\  \\  \sec( \alpha )  - x \cos( \alpha )  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  =  \cos( \alpha )  \\  \\  \\  \frac{1}{ \cos( \alpha ) }  -  x\sin( \alpha )  =  \cos( \alpha  )  \\  \\  \\ x \sin( \alpha )  =  \frac{1}{ \cos( \alpha ) }  -  \cos( \alpha )  \\  \\  \\ x \sin( \alpha )  =  \frac{1 -  { \cos}^{2} \alpha  }{ \cos( \alpha ) }  \\  \\  \\ x \sin( \alpha )  =  \frac{ { \sin }^{2}   \alpha }{ \cos( \alpha ) }  \\  \\  \\ x =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  \\  \\  \\ x =  \tan( \alpha )

THANKS

Similar questions