Answer the above question
Attachments:
sanasankalp:
hi
Answers
Answered by
1
hope this answer will help you.
Attachments:
Answered by
5
tan θ + sin θ = m ......( 1 )
tan θ - sin θ = n .......( 2 )
Multiply eq (1) and eq (2) :
( tan θ + sin θ )( tan θ - sin θ ) = m n
⇒ tan² θ - sin² θ = mn
⇒ sin² θ / cos² θ - sin² θ = mn
⇒ sin² θ ( 1/cos² θ - 1 ) = mn
⇒ sin² θ ( 1 - cos² θ ) / cos² θ = mn
⇒ sin² θ/cos² θ × sin² θ = mn
⇒ sin² θ × tan² θ = mn
Multiply both sides by 16 :
⇒ 16 sin² θ tan² θ = 16 mn
⇒ ( 4 sin θ tan θ )² = 16 mn
Add and subtract these terms :
⇒ ( sin² θ + tan² θ + 2 sin θ tan θ + 2 sin θ tan θ - sin² θ - tan² θ )² = 16 mn
Use a² + b² + 2 ab as ( a + b )²
⇒ ( ( sin θ + tan θ )² - ( sin θ - tan θ )² )² = 16 mn
Recall the values of m and n :
⇒ ( m² - n² )² = 16 mn
Hence the given problem is proved :)
Similar questions
Social Sciences,
7 months ago
Social Sciences,
7 months ago
Math,
7 months ago
Computer Science,
1 year ago
Biology,
1 year ago