Math, asked by yeseyi2484, 9 months ago

Answer the above THE BEST WILL GET BRAINLIEST
Note: if you randomly wrote anything you will be reported
PS: You will not get the answer in google so don't waste your time!!​

Attachments:

Answers

Answered by BendingReality
25

Answer:

\displaystyle \longrightarrow \frac{\cos (7x-5)}{7} +C \\

First option is correct!

Step-by-step explanation:

Let :

\displaystyle \text{I}=\int\limits {\sin(5-7x)} \, dx  \\ \\

Let :

= > 5 - 7 x = t

Diff. w.r.t. x :

= > 0 - 7 = d t / d x

= > d x = - 7 / x

Putting value of d x in I we get :

\displaystyle \text{I}=\int\limits {\sin(t)} \, dx \\ \\

\displaystyle \text{I}=\frac{1}{7} \int\limits{\sin(t)} \, dt \\ \\

\displaystyle \text{I}=-\frac{\cos t}{7} +C \\ \\

\displaystyle \longrightarrow \text{I}=-\frac{\cos (5-7x)}{7} +C \\ \\

\displaystyle \longrightarrow \text{I}=\frac{\cos (7x-5)}{7} +C \\ \\

Hence we get required answer!

Answered by HeartCrusher
4

Answer:

\displaystyle \longrightarrow \frac{\cos (7x-5)}{7} +C \\

First option is correct!

Step-by-step explanation:

Let :

\displaystyle \text{I}=\int\limits {\sin(5-7x)} \, dx  \\ \\

Let :

= > 5 - 7 x = t

Diff. w.r.t. x :

= > 0 - 7 = d t / d x

= > d x = - 7 / x

Putting value of d x in I we get :

\displaystyle \text{I}=\int\limits {\sin(t)} \, dx \\ \\

\displaystyle \text{I}=\frac{1}{7} \int\limits{\sin(t)} \, dt \\ \\

\displaystyle \text{I}=-\frac{\cos t}{7} +C \\ \\

\displaystyle \longrightarrow \text{I}=-\frac{\cos (5-7x)}{7} +C \\ \\

\displaystyle \longrightarrow \text{I}=\frac{\cos (7x-5)}{7} +C \\ \\

Hence we get required answer!

Similar questions