Math, asked by Anonymous, 4 months ago

answer the attachment and then answer a one more question,

following reaction is performed at 298K.

\sf 2NO(g)+O_2(g)\rightleftharpoons 2NO_2 (g)

the standard free energy of formation of NO(g) is 86.6 kJ/mol at 298K. what is standard free energy of formation of NO_2(g) at 298K?​

Attachments:

Answers

Answered by Anonymous
96

answer for first Question:-

perimeter \sf = 2(2\boldsymbol\alpha +2 \ cos \ 2 \boldsymbol\alpha)

\sf = 4(\boldsymbol\alpha + cos \ 2\boldsymbol\alpha)

\sf \dfrac{dP}{d\boldsymbol\alpha} = 4(1-2 \ sin \ 2\boldsymbol\alpha) = 0

\sf sin \ 2\boldsymbol\alpha = \dfrac{1}{2}

\sf 2\boldsymbol\alpha = \dfrac{\pi}{6} , \dfrac{5\pi}{6}

\sf \dfrac{d^2P}{d\boldsymbol\alpha^2} = -4 \ cos \ 2\boldsymbol\alpha

for \sf max(\boldsymbol\alpha) = \dfrac{\pi}{12}

area \sf = (2\boldsymbol\alpha) \times (2\ cos \ 2 \boldsymbol\alpha)

\sf = \dfrac{\pi}{6} \times 2 \times \dfrac{\sqrt{3}}{2}

rationalise the denominator

\sf = \dfrac{\pi}{6} \times \sqrt{3} \times \dfrac{\sqrt{3}}{\sqrt{3}}

\sf = \dfrac{\pi \sqrt{3}^2}{6\sqrt{3}}

\boxed{\sf = \dfrac{{}^1 \cancel{3} \pi}{{}^2 \cancel{6} \sqrt{3}} = \dfrac{\pi}{2\sqrt{3}}}

answer for second question:

\sf ( \rm \Delta \sf G^{\circ} )_{reaction} = \bigg[ ( \rm \Delta \sf G^{\circ} )_{formation}\bigg]_{product}

\sf \implies -RT \ ln \ K_p = 2( \rm \Delta \sf G^{\circ} )_{NO_{2}} - 2( \rm \Delta \sf G^{\circ} )_{NO}

\sf \implies ( \rm \Delta \sf G^{\circ} )_{NO_{2}} = ( \rm \Delta \sf G^{\circ} )_{NO} - RT \ ln \ K_p

\sf \implies ( \rm \Delta \sf G^{\circ} ) = \dfrac{2\times 86600 - R(298) \ ln \ K_p}{2}

\boxed{\sf = 0.5(2\times 86600 -R(298) \ ln \ 1.6 \times 10^{12} )}

Answered by Anonymous
5

Answer:

Hiii Damsildevil

thanks alot yrr

one again

how are you

myself -om

from mumbai

Similar questions