Math, asked by ChromaticSoul, 10 months ago

answer the both of parts


useless answer will be reported​

Attachments:

Answers

Answered by Anonymous
2

\huge\underline\mathfrak\green{Answer}

\frac{3y - 4}{2} = \frac{5 - 2y}{4}

 4 ( 3y - 4  ) = 2 ( 5 - 2y )

 12 y - 16 = 10 -4y

 12 y + 4y = 10 + 16

 16 y = 26

 y = \frac{26}{16}

 y = \frac{13}{8}

✿ Hence , the value of y is \frac{13}{8}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\frac{2}{3}x + \frac{3}{2}x - \frac{3}{4}x = \frac{17}{4}

\frac{(2 × 4 + 3 × 6 -  3 × 3)x }{12} = \frac{17}{4}

\frac{ 8x + 18 x - 9x }{12} = \frac{17}{4}

\frac{ 17x }{12} = \frac{17}{4}

 17x × 4 = 17 × 12

 x = \frac{ 17 × 12 }{17 × 4 }

 x = 3

✦ Hence , the value of x is 3 ✦

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Answered by InfiniteSoul
4

{\underline{\boxed{\tt{\purple{Solution\: 1 }}}}}

\implies \dfrac{3y-4}{2} = \dfrac{5 - 2y}{4}

\implies 4 ( 3y - 4) = 2 ( 5 - 2y)

\implies 12y - 16 = 10 - 4y

\implies 12y + 4y = 10 + 16

\implies 16y = 26

\implies y = \dfrac{26}{16}

{\underline{\boxed{\tt{\blue{y = \dfrac{26}{16}}}}}}

{\underline{\boxed{\tt{\purple{Solution\: 2}}}}}

\implies\dfrac{2x}{3} + \dfrac{3x}{2} - \dfrac{3x}{4} = \dfrac{17}{4}

\implies \dfrac{8x + 18x - 9x }{12} = \dfrac{17}{4}

\implies {17x}{12} = \dfrac{17}{4}

\implies x = \dfrac{17\times 12}{17\times 4}

\implies x = \dfrac{12}{4}

\implies x = 3

{\underline{\boxed{\tt{\blue{x = 3 }}}}}

______________________❤

Similar questions