Math, asked by devansh212, 9 months ago

Answer the following questions:
1. If S={0, 1, 2, 3, 4, 5, 6, 7, 8, 9), A = {1, 3, 5), B = {1, 2, 3, 4, 5) and C = {4, 6, 8) the find (An B) nC'.
2. If cosec x =-13/12
and x does not lie in third quadrant then find all other trigonometric ratios.

3. Find the modulus and amplitude of the complex number
1-3i/1 +2i.
4. If A and B are the roots of the equation ax2 + bx +c= 0, then form an equation whose roots are
A+1/B , B+1/A.​

Answers

Answered by Swarup1998
2

(1)

Given:

  • S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
  • A = {1, 3, 5}
  • B = {1, 2, 3, 4, 5}
  • C = {4, 6, 8}

To find: (A ∩ B) ∩ C'

Solution:

  • A ∩ B = {1, 3, 5}
  • C' = S - C = {0, 1, 2, 3, 5, 7, 9}
  • Then (A ∩ B) ∩ C' = {1, 3, 5}

Answer: (A ∩ B) ∩ C' = {1, 3, 5}

(2)

Given: cosecx=-\frac{13}{12}

To find: all trigonometric ratios

Solution:

  • Here cosecx=-\frac{13}{12}

  • In the third quadrant, sin, cos, cosec, sec are negative and tan, cot ratios are positive.

  • sinx=\frac{1}{cosecx}=\frac{1}{-\frac{13}{12}}=-\frac{12}{13}

  • cosx=-\frac{\sqrt{13^{2}-12^{2}}}{13}=-\frac{\sqrt{169-144}}{13}\\=-\frac{\sqrt{25}}{13}=-\frac{5}{13}

  • secx=\frac{1}{cosx}=\frac{1}{-\frac{5}{13}}=-\frac{13}{5}

  • tanx=\frac{sinx}{cosx}=\frac{-\frac{12}{13}}{-\frac{5}{13}}=\frac{12}{5}
  • cotx=\frac{1}{tanx}=\frac{1}{\frac{12}{5}}=\frac{5}{12}

Answer:

  1. sinx=-\frac{12}{13}
  2. cosx=-\frac{5}{13}
  3. tanx=\frac{12}{5}
  4. cosecx=-\frac{13}{12}
  5. secx=-\frac{13}{5}
  6. cotx=\frac{5}{12}

(3)

Given: \frac{1-3i}{1+2i}

To find:

  • modulus & amplitude

Solution:

  • Now z=\frac{1-3i}{1+2i}

  • =\frac{(1-3i)(1-2i)}{(1+2i)(1-2i)}

  • =\frac{1-5i+6i^{2}}{1-4i^{2}}

  • =\frac{1-5i-6}{1+4}

  • =\frac{-5-5i}{5}
  • =-1-i

  • \Rightarrow z=-1-i

  • Thus |z|=\sqrt{(-1)^{2}+(-1)^{2}}\\=\sqrt{1+1}=\sqrt{2}

  • Now amplitude \theta=tan^{-1}\frac{-1}{-1}-\pi

  • \Rightarrow \theta=tan^{-1}(1)-\pi

  • \Rightarrow \theta=\frac{\pi}{4}-\pi

  • \Rightarrow \theta=-\frac{3\pi}{4}

  • Note: z=-1-i=\sqrt{2}(cos\frac{5\pi}{4}+isin\frac{5\pi}{4})

  • Here \frac{5\pi}{4} does not give the principal argument of -1-i since \theta=\frac{5\pi}{4} does not satisfy the relatioon -\pi<\theta\leqslant\pi.

Answer:

  1. modulus is \sqrt{2}
  2. amplitude is (-\frac{3\pi}{4})

(4)

Given:

  • A and B are roots of
  • \quad ax^{2}+bx+c=0

To find: an equation whose roots are A+\frac{1}{B} and B+\frac{1}{A}

Solution:

Since A and B are the roots of the given equation ax^{2}+bx+c=0, we get

  • A+B=-\frac{b}{a}
  • AB=\frac{c}{a}

So the equation whose roots are A+\frac{1}{B} and B+\frac{1}{A} is given by

\quad \{x-(A+\frac{1}{B})\}\{x-(B+\frac{1}{A})\}=0

\Rightarrow x^{2}-(A+B+\frac{1}{A}+\frac{1}{B})x-(A+\frac{1}{B})(B+\frac{1}{A})=0

\Rightarrow x^{2}-(A+B+\frac{A+B}{AB})x-(AB+\frac{1}{AB}+2)=0

\Rightarrow x^{2}-(-\frac{b}{a}+\frac{-\frac{b}{a}}{\frac{c}{a}})x-(\frac{c}{a}+\frac{1}{\frac{c}{a}}+2)=0

\Rightarrow x^{2}-(-\frac{b}{a}-\frac{b}{c})x-(\frac{c}{a}+\frac{a}{c}+2)=0

\Rightarrow x^{2}+\frac{b(a+c)}{ac}x-\frac{c^{2}+a^{2}+2ac}{ac}=0

\Rightarrow acx^{2}+b(a+c)x-(a+c)^{2}=0

Answer: the required equation is

  • acx^{2}+b(a+c)x-(a+c)^{2}=0
Similar questions