Math, asked by ashnimbalkar8, 11 months ago

answer the question as fast as possible ​

Attachments:

Answers

Answered by Anonymous
2

Question

If secθ + tanθ = p, then find the value of cosecθ.

Solution

sec \theta + tan \theta = p  \longrightarrow (1)

We know that

 \tt sec^{2}  \theta  -  tan^{2}  \theta =1

 \implies (sec  \theta + tan \theta )(sec \theta - tan \theta)=1

[ Because a² - b² = (a + b)(a - b) ]

 \implies p \times (sec \theta - tan \theta)=1

 \implies sec \theta - tan \theta= \dfrac{1}{p}   \longrightarrow(2)

Adding (1) & (2)

 \implies sec \theta + tan \theta + (sec \theta  - tan \theta) = p +  \dfrac{1}{p}

 \implies sec \theta + tan \theta + sec \theta  - tan \theta =  \dfrac{ {p}^{2} + 1 }{p}

 \implies 2sec \theta =  \dfrac{ {p}^{2} + 1 }{p}

 \implies sec \theta =  \dfrac{ {p}^{2} + 1 }{2p}  \longrightarrow(3)

Subtracting (2) from (1)

 \implies sec \theta + tan \theta - (sec \theta - tan \theta) = p -  \dfrac{1}{p}

 \implies sec \theta + tan \theta - sec \theta  + tan \theta= \dfrac{ {p}^{2}  - 1}{p}

 \implies 2tan \theta= \dfrac{ {p}^{2} -  1}{p}

 \implies tan \theta= \dfrac{ {p}^{2} -  1}{2p}  \longrightarrow(4)

Dividing (3) by (4)

 \implies sec \theta \div tan \theta  =  \dfrac{ {p}^{2} + 1 }{2p}   \div  \dfrac{ {p}^{2} - 1 }{2p}

 \implies  \dfrac{1}{cos \theta}  \div  \dfrac{sin \theta}{cos \theta}   =  \dfrac{ {p}^{2} + 1 }{2p}    \times   \dfrac{2p}{ {p}^{2} - 1}

[ Because secθ = 1/cosθ and tanθ = sinθ/cosθ ]

 \implies  \dfrac{1}{cos \theta}   \times  \dfrac{cos \theta}{sin \theta}   =  \dfrac{ {p}^{2} + 1 }{ {p}^{2} - 1 }

 \implies  \dfrac{1}{sin \theta}   =  \dfrac{ {p}^{2} + 1 }{ {p}^{2} - 1 }

 \implies cosec \theta   =   \boxed{\dfrac{ {p}^{2} + 1 }{ {p}^{2} - 1 }  }

[ Because 1/sinθ = cosecθ ]

Hence the value of cosecθ is (p² + 1)/(p² - 1).

Answered by RvChaudharY50
33

Given :---

  • secA + tanA = p

To Find :---

  • cosecA ?

Formula used :---

  • sec²A - tan²A = 1
  • cotA = 1/tanA
  • cosec²A - cot²A = 1
  • (a² - b²) = (a+b)(a-b)
  • (a²+2ab+b²) = (a+b)²

Solution :-------

secA+tanA = p ---------------------------- Equation (1)

using formula here, sec²A-tan²A = 1

and (a² - b²) = (a+b)(a-b)

→ (secA+tanA)(secA-tanA) = 1

→ secA-tanA = 1/p -----------------------Equation (2)

Subtracting Equation (2) from Equation (1) we get,

2tanA = p-(1/p)

→ tanA = (p²-1)/2p

using cotA = 1/tanA

→ cotA = 2p/(p²-1) ---------------------- Equation (3)

Now, using cosec²A-cot²A = 1

→ cosec²A = 1+cot²A

Putting value of cotA from Equation (3)

→ cosec²A = 1+[2p/(p²-1)]²

→ cosec²A = 1+4p²/(p²-1)²

→ cosec²A = (p⁴-2p²+1+4p²)/(p²-1)²

→ cosec²A = (p⁴+2p²+1)/(p²-1)²

→ cosec²A = (p²+1)²/(p²-1)²

→ cosecA = (p²+1)/(p²-1) (Ans)

(Hope it Helps you)

Similar questions