answer the question as fast as possible
Answers
Question
If secθ + tanθ = p, then find the value of cosecθ.
Solution
We know that
[ Because a² - b² = (a + b)(a - b) ]
Adding (1) & (2)
Subtracting (2) from (1)
Dividing (3) by (4)
[ Because secθ = 1/cosθ and tanθ = sinθ/cosθ ]
[ Because 1/sinθ = cosecθ ]
Hence the value of cosecθ is (p² + 1)/(p² - 1).
Given :---
- secA + tanA = p
To Find :---
- cosecA ?
Formula used :---
- sec²A - tan²A = 1
- cotA = 1/tanA
- cosec²A - cot²A = 1
- (a² - b²) = (a+b)(a-b)
- (a²+2ab+b²) = (a+b)²
Solution :-------
secA+tanA = p ---------------------------- Equation (1)
using formula here, sec²A-tan²A = 1
and (a² - b²) = (a+b)(a-b)
→ (secA+tanA)(secA-tanA) = 1
→ secA-tanA = 1/p -----------------------Equation (2)
Subtracting Equation (2) from Equation (1) we get,
2tanA = p-(1/p)
→ tanA = (p²-1)/2p
using cotA = 1/tanA
→ cotA = 2p/(p²-1) ---------------------- Equation (3)
Now, using cosec²A-cot²A = 1
→ cosec²A = 1+cot²A
Putting value of cotA from Equation (3)
→ cosec²A = 1+[2p/(p²-1)]²
→ cosec²A = 1+4p²/(p²-1)²
→ cosec²A = (p⁴-2p²+1+4p²)/(p²-1)²
→ cosec²A = (p⁴+2p²+1)/(p²-1)²
→ cosec²A = (p²+1)²/(p²-1)²