Math, asked by Princeroar, 1 year ago

Answer the question in attachment

Attachments:

Answers

Answered by Anonymous
10

\bf{\large{\underline{\underline{Question:-}}}}

\large{ \sf Simplify \: \dfrac{ {9}^{\frac{1}{3}} \times  {27}^{ -  \frac{1}{2} }  }{ {3}^{ \frac{1}{8}} \times  {3}^{ - \frac{2}{3} } } }

\bf{\large{\underline{\underline{Solution:-}}}}

\large{\sf \dfrac{ {9}^{\frac{1}{3}} \times  {27}^{ -  \frac{1}{2} }  }{ {3}^{ \frac{1}{8}} \times  {3}^{ - \frac{2}{3} } } }

\large{ \sf = \dfrac{ {({3}^{2})}^{\frac{1}{3}} \times  {( {3}^{3})}^{ -  \frac{1}{2} }  }{ {3}^{ \frac{1}{8}} \times  {3}^{ - \frac{2}{3} } } }

[In numerator  \sf  {9}^{\frac{1}{3}} = {({3}^{2})}^{\frac{1}{3}} because 9 can be written as 3² and  \sf  {27}^{-\frac{1}{2}} = {({3}^{3})}^{-\frac{1}{2}} because 27 can be written as 3³]

\large{ \sf = \dfrac{ {(3)}^{\frac{1}{3} \times 2} \times  {(3)}^{ -  \frac{1}{2} \times3 }  }{ {3}^{ \frac{1}{8}} \times  {3}^{ - \frac{2}{3} } } }

[Law of exponents used in numerator  \sf (a^m)^n = a^{mn} ]

\large{ \sf = \dfrac{ {(3)}^{\frac{2}{3}} \times  {(3)}^{ -  \frac{3}{2}}  }{ {3}^{ \frac{1}{8}} \times  {3}^{ - \frac{2}{3} } } }

\large{ \sf = \dfrac{ {(3)}^{\frac{2}{3}+ ( -  \frac{3}{2})} }{ {3}^{ \frac{1}{8}} \times  {3}^{ - \frac{2}{3} } } }

[Law of exponents used in numerator  \sf a^m \times a^n = a^{m + n} ]

\large{ \sf = \dfrac{ {(3)}^{\frac{2}{3}-  \frac{3}{2}} }{ {3}^{ \frac{1}{8}} \times  {3}^{ - \frac{2}{3} } } }

\large{ \sf = \dfrac{ {(3)}^{\frac{2 \times 2}{3 \times 2}-  \frac{3 \times 3}{2 \times 3}} }{ {3}^{ \frac{1}{8}} \times  {3}^{ - \frac{2}{3} } } }

\large{ \sf = \dfrac{ {(3)}^{\frac{4}{6}-  \frac{9}{6}} }{ {3}^{ \frac{1}{8}} \times  {3}^{ - \frac{2}{3} } } }

\large{ \sf = \dfrac{ {(3)}^{-  \frac{5}{6}} }{ {3}^{ \frac{1}{8}} \times  {3}^{ - \frac{2}{3} } } }

\large{ \sf = \dfrac{ {(3)}^{-  \frac{5}{6}} }{ {3}^{ \frac{1}{8} + ( -  \frac{2}{3})}} }

[Law of exponents used in numerator  \sf a^m \times a^n = a^{m + n} ]

\large{ \sf = \dfrac{ {(3)}^{-  \frac{5}{6}} }{ {3}^{ \frac{1}{8}-  \frac{2}{3}}} }

\large{ \sf = \dfrac{ {(3)}^{-  \frac{5}{6}} }{ {3}^{ \frac{1 \times 3}{8 \times 3}-  \frac{2 \times 8}{3 \times 8}}} }

\large{ \sf = \dfrac{ {(3)}^{-  \frac{5}{6}} }{ {3}^{ \frac{3}{24}-  \frac{16}{24}}} }

\large{ \sf  = \dfrac{ {(3)}^{-  \frac{5}{6}} }{ {3}^{-  \frac{13}{24}}} }

\large{ \sf  =(3)^{ -  \frac{5}{6} - ( -  \frac{13}{24}) } }

[Law of exponent used  \sf a^m \div a^n = a^{m-n} ]

\large{ \sf  =(3)^{ -  \frac{5}{6} +  \frac{13}{24}} }

\large{ \sf  =(3)^{ -  \frac{5 \times 4}{6 \times 4} +  \frac{13}{24}}  }

\large{ \sf  =(3)^{ -  \frac{20}{24} +  \frac{13}{24}} }

\large{ \sf  =3^{ -  \frac{7}{24}} }

\Huge{ \sf  = \dfrac{1}{ {3}^{ \frac{7}{24} } } }

[Law of exponent used  \sf a^{-m} = \dfrac{1}{a^m} ]

Answered by AbhijithPrakash
14

Answer:

\dfrac{9^{\dfrac{1}{3}}\times \:27^{-\dfrac{1}{2}}}{3^{\dfrac{1}{8}}\times \:3^{-\dfrac{2}{3}}}=\dfrac{1}{3^{\dfrac{7}{24}}}\quad \left(\mathrm{Decimal:\quad }\:0.72584\dots \right)

Step-by-step explanation:

\dfrac{9^{\dfrac{1}{3}}\times \:27^{-\dfrac{1}{2}}}{3^{\dfrac{1}{8}}\times \:3^{-\dfrac{2}{3}}}

\gray{3^{\dfrac{1}{8}}\times \:3^{-\dfrac{2}{3}}=3^{\dfrac{1}{8}-\dfrac{2}{3}}}

=\dfrac{27^{-\dfrac{1}{2}}\times \:9^{\dfrac{1}{3}}}{3^{\dfrac{1}{8}-\dfrac{2}{3}}}

\gray{\mathrm{Factor}\:9^{\dfrac{1}{3}}:\quad 3^{\dfrac{2}{3}}}

=\dfrac{27^{-\dfrac{1}{2}}\times \:3^{\dfrac{2}{3}}}{3^{\dfrac{1}{8}-\dfrac{2}{3}}}

\gray{\mathrm{Cancel\:}\dfrac{3^{\dfrac{2}{3}}\times \:27^{-\dfrac{1}{2}}}{3^{\dfrac{1}{8}-\dfrac{2}{3}}}}

\dfrac{3^{\dfrac{2}{3}}\times \:27^{-\dfrac{1}{2}}}{3^{\dfrac{1}{8}-\dfrac{2}{3}}}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \dfrac{x^a}{x^b}=x^{a-b}}

\gray{\dfrac{3^{\dfrac{2}{3}}}{3^{\dfrac{1}{8}-\dfrac{2}{3}}}=3^{\dfrac{2}{3}-\left(\dfrac{1}{8}-\dfrac{2}{3}\right)}}

=27^{-\dfrac{1}{2}}\times \:3^{\dfrac{2}{3}-\left(\dfrac{1}{8}-\dfrac{2}{3}\right)}

\gray{\mathrm{Subtract\:the\:numbers:}\:\dfrac{2}{3}-\left(\dfrac{1}{8}-\dfrac{2}{3}\right)=\dfrac{29}{24}}

=3^{\dfrac{29}{24}}\times \:27^{-\dfrac{1}{2}}

\gray{\mathrm{Factor\:integer\:}27=3^3]

=3^{\dfrac{29}{24}}\left(3^3\right)^{-\dfrac{1}{2}}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}}

\gray{\left(3^3\right)^{-\dfrac{1}{2}}=3^{3\left(-\dfrac{1}{2}\right)}}

=3^{\dfrac{29}{24}}\times \:3^{3\left(-\dfrac{1}{2}\right)}

\gray{\mathrm{Refine}}

=3^{\dfrac{29}{24}}\times \:3^{-\dfrac{3}{2}}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^b\times \:a^c=a^{b+c}}

\gray{3^{\dfrac{29}{24}}\times \:3^{-\dfrac{3}{2}}=\:3^{\dfrac{29}{24}-\dfrac{3}{2}}}

=3^{\dfrac{29}{24}-\dfrac{3}{2}}

\gray{\mathrm{Join}\:\dfrac{29}{24}-\dfrac{3}{2}:\quad -\dfrac{7}{24}}

=3^{-\dfrac{7}{24}}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^{-b}=\dfrac{1}{a^b}}

=\dfrac{1}{3^{\dfrac{7}{24}}}

Similar questions