Math, asked by srs24, 1 month ago

answer the question what is maximum value of​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

Let the given determinant be

y =  \cos(x) ( \cos(x)  - 1) - ( -  \sin(x) ). \sin(x)  \\

 \implies \: y =  \cos^{2} (x)  -  \cos(x)   +   \sin^{2} (x)  \\

 \implies \: y =  \cos^{2} (x)  +  \sin^{2} (x) -  \cos(x)   +    \\

 \implies \: y =1-  \cos(x)       \\

We know,

 - 1 \leqslant  \cos(x)  \leqslant 1

  \implies \: 1 \geqslant   - \cos(x)  \geqslant  - 1

  \implies \: 1 + 1 \geqslant   1 - \cos(x)  \geqslant   - 1 + 1 \\

  \implies \: 2 \geqslant   1 - \cos(x)  \geqslant   0 \\

  \implies \: 0\leqslant   1 - \cos(x)  \leqslant   2 \\

So, minimum value of y is 0

Similar questions