Math, asked by good2168, 1 year ago

answer the questions​

Attachments:

Answers

Answered by payalbhatiabasti
0

Answer:

we will cross multipy

11×x²+xy+y²

12×x²-xy+y²

Answered by ItsTogepi
9

\huge\underline\red\bigstar{\boxed{\boxed{\mathfrak\red{Hello}}}}

x =  \frac{ \sqrt{7 } +  \sqrt{3} }{ \sqrt{7} -  \sqrt{3}  }  \: and \: xy = 1

. :

y =  \frac{1}{x}  =  \frac{ \sqrt{7}   -  \sqrt{3} }{ \sqrt{7}  +  \sqrt{3} }  \\  \\ Now, \\ x + y =  \frac{ \sqrt{7}  +  \sqrt{3} }{ \sqrt{7}  -  \sqrt{3} }  +  \frac{ \sqrt{7}  -  \sqrt{3} }{ \sqrt{7} +  \sqrt{3}  }  \\

 =  \frac{ (\sqrt{7}  +  { \sqrt{3} })^{2} + ( \sqrt{7}   -  { \sqrt{3} })^{2} }{( \sqrt{7}  -  \sqrt{3})( \sqrt{7}  +  \sqrt{3}  }  \\  =  \frac{(7 + 3 + 2 \sqrt{7 }   \times  \sqrt{3} ) + (7 + 3 - 2 \times  \sqrt{7}  \times  \sqrt{3} )}{ { (\sqrt{7} })^{2} -  {( \sqrt{3} })^{2}  }  \\  =  \frac{20}{7 - 3}  \\  =  \frac{20}{4}  \\  = 5

Now, \\   \frac{ {x}^{2}  + xy +  {y}^{2} }{ {x}^{2} - xy +  {y}^{2}  }  \\  =  \frac{(x +  {y})^{2} - xy }{(x +  {y})^{2} - 3xy  }  \\  =   \frac{ ({5})^{2}  - 1}{( {5})^{2}  - 3 \times 1}  \\  =  \frac{25 - 1}{25 - 3}  \\  =  \frac{24}{22}  \\  =  \frac{12}{11}  \: [Proved]

\huge\mathfrak\red{Hope \: it \: helps \: uhh}

Similar questions