Math, asked by akashmass, 1 year ago

answer the questions

Attachments:

Answers

Answered by jayGkcvvv
0
By RHs property the triangle is congruent
Answered by MOSFET01
5
\bold{\large{Solution\: \colon}}

\bold{\large{\underline{Given \: \colon}}}

∆ ABC in which AD is perpendicular on BC and AB = AC

\bold{\large{\underline{To \: Find}}}

\bold{ \triangle{ADB} \: \cong \: \triangle{ADC}}

\bold{\large{\underline{Solution\: \colon}}}

In triangles

\bold{ \triangle{ADB} \: \& \: \triangle{ADC}}

\bold{ AD \: = \: AD} ....(common)

\bold{AB \: = \: AC } ....(given)

\bold{ \angle{ADB}\: = \: \angle{ADC}} ....(90°)

Now it is clear that

\bold{ \triangle{ADB} \: \cong \: \triangle{ADC}}

By \bold{RHS} Congruency Rule

AB = AC (given)

by this

\angle{ABD} \: = \: \angle{ACD}

If the \bold{opposite\: sides} of triangle are equal then it's \bold{opposite} angles are also equal.

\bold{ \triangle{ADB} \: \& \: \triangle{ADC}}

\bold{ \angle{ADB}\: = \: \angle{ADC}} ....(90°)

\bold{\angle{ABD} \: = \: \angle{ACD}} ....(proved)

\bold{AB \: = \: AC } ....(given)

\bold{ \triangle{ADB} \: \cong \: \triangle{ADC}}

By \bold{AAS} Congruency rule

\bold{\large{\underline{Answer\: \colon}}}

\bold{\large{\boxed{\boxed{(4)\: Both \: (2) \: \& \: (3)}}}}

Hence Proved

\bold{\large{Thanks}}
Similar questions