answer this!
brainliest answer will be selected
Answers
Step-by-step explanation:
Given, a circle with center O, from an external point T two tangents TP and TQ are drawn to the circle, where P and Q are the points of contact.
Prove: ∠PTQ = 2∠OPQ
Proof:
TP = TQ {∴ Tangents from an external point are equal}
So, TPQ is an isosceles triangle,
∴ ∠TPQ = ∠TQP
⇒ ∠TPQ + ∠TQP + ∠PTQ = 180°
⇒ 2∠TPQ = 180° - ∠PTQ
⇒ ∠TPQ = 90° - (1/2)∠PTQ
⇒ (1/2)∠PTQ = 90° - ∠TPQ ------- (i)
Also, OPT = 90° {Radius and Tangent are perpendicular}
⇒ ∠OPQ + ∠TPQ = 90°
⇒ ∠OPQ = 90° - ∠TPQ ------- (ii)
From (i) & (ii), we get
⇒ (1/2)∠PTQ = ∠OPQ
⇒ ∠PTQ = 2∠OPQ.
Hope it helps!
TP = TQ {∴ Tangents from an external point are equal}
So, TPQ is an isosceles triangle,
∴ ∠TPQ = ∠TQP
⇒ ∠TPQ + ∠TQP + ∠PTQ = 180°
⇒ 2∠TPQ = 180° - ∠PTQ
⇒ ∠TPQ = 90° - (1/2)∠PTQ
⇒ (1/2)∠PTQ = 90° - ∠TPQ ------- (i)
Also, OPT = 90° {Radius and Tangent are perpendicular}
⇒ ∠OPQ + ∠TPQ = 90°
⇒ ∠OPQ = 90° - ∠TPQ ------- (ii)
From (i) & (ii), we get
⇒ (1/2)∠PTQ = ∠OPQ
⇒ ∠PTQ = 2∠OPQ.