Math, asked by Anonymous, 4 months ago

Answer this
Don't spam⚠️​

Attachments:

masterking1: hii
masterking1: The mircuelous
Anonymous: what..?
masterking1: nothing
masterking1: your intro
masterking1: thank you for following me
jatin7761: hii

Answers

Answered by Anonymous
51

Given that PQ + QR = 30cm.

According to Pythagoras Theorem,

PQ² + QR² = PR²

\longrightarrow 30² + 30² = PR²

\longrightarrow PR² = 2(30)²

\longrightarrow PR = √2(30)²

\longrightarrow PR = 30√2 cm.

Further,

  • sin∅ = Opposite side/Hypotenuse
  • sec∅ = Hypotenuse/Adjacent Side

Now,

sin²R = (PQ/PR)²

\longrightarrow sin²R = (30/30√2)²

\longrightarrow sin²R = (1/√2)²

\longrightarrow sin²R = 1/2

Also,

sec²R = (PR/QR)²

\longrightarrow sec²R = (30√2/30)²

\longrightarrow sec²R = (√2)²

\longrightarrow sec²R = 2

Therefore,

sin²R + sec²R

\longrightarrow 1/2 + 2

\longrightarrow (1 + 4)/2

\longrightarrow 5/2

Hence, Proved.

Answered by Anonymous
4

Given that PQ + QR = 30cm.

According to Pythagoras Theorem,

PQ² + QR² = PR²

 \sf \bf⟶ 30² + 30² = PR²

 \sf \bf⟶ PR² = 2(30)²

 \sf \bf⟶ PR = √2(30)²

 \bf \sf⟶ PR = 30√2 cm.

Further,

  • sin∅ = Opposite side/Hypotenuse
  • sec∅ = Hypotenuse/Adjacent Side

Now,

sin²R = (PQ/PR)²

⟶ sin²R = (30/30√2)²

⟶ sin²R = (1/√2)²

⟶ sin²R = 1/2

Also,

sec²R = (PR/QR)²

⟶ sec²R = (30√2/30)²

⟶ sec²R = (√2)²

⟶ sec²R = 2

Therefore,

sin²R + sec²R

⟶ 1/2 + 2

⟶ (1 + 4)/2

⟶ 5/2

Hence, Proved.

Similar questions