Math, asked by Kshitij211, 1 year ago

answer this friends it's urgent

Attachments:

Answers

Answered by siddhartharao77
5
Given LHS = (a + b)^3 + (b + c)^3 + (c + a)^3 - 3(a + b)(b + c)(c + a)

= > a^3 + b^3 + 3ab(a + b) + b^3 + c^3 + 3bc(b + c) + c^3 + a^3 + 3ac(a + c) - 3(ab + ac + b^2 + bc)(c + a)


= > a^3 + b^3 + 3a^2b + 3ab^2 + b^3 + c^3 + 3b^2c + 3bc^2 + c^3 + a^3 + 3a^2c + 3ac^2 - 3(2ac + a^2b + ac^2 + a^2c + ab^2 + b^2c + bc^2)


 = > a^3 + b^3 + 3a^2b + 3ab^2 + b^3 + c^3 + 3b^2c + 3bc^2 + c^3 + a^3 + 3a^2c + 3ac^2 - (6abc + 3a^2b + 3ac^2 + 3a^2c + 3ab^2 + 3b^2c + 3bc^2)


= > a^3 + b^3 + 3a^2b + 3ab^2 + b^3 + c^3 + 3b^2c + 3bc^2 + c^3 + a^3 + 3a^2c + 3ac^2 - 6abc - 3a^2b - 3ac^2 - 3a^2c - 3ab^2 - 3b^2c - 3bc^2


= > 2a^3 + 2b^3 + 2c^3 - 6abc

= > 2(a^3 + b^3 + c^3 - 3abc).


LHS = RHS.


Hope this helps!

Lekhraj: mark my answer as BRAINLIEST one
Lekhraj: Lekhraj
Lekhraj: im lekhraj
Kshitij211: no sidharth answered best and it is right
siddhartharao77: Thanks Again. And please don't chat here.
Kshitij211: so
Lekhraj: leave it
Similar questions