answer this in ten min ..urgent pls
Answers
Answer:
please refer to the attachment
I hope it would help you
thank you.
if possible,
please mark as brainlist
to prove,
x³ + y³ + z³ - 3xyz = ½(x + y + z)[(x - y)² + (y - z)² + (z - x)²
Step-by-step explanation:
here,
given equation
x³ + y³ + z³ - 3xyz = ½(x + y + z)[(x - y)² + (y - z)² + (z - x)²]
and we kow that,
x² + y² + z² - 3xyz = (x + y + z) (x² + y² + z² - xy - yz - zx)
here in given equation
RHS
= ½(x + y + z)[(x - y)² + (y - z)² + (z - x)²
by solving this,
= ½(x + y + z) (x² + y² - 2xy + y² + z² - 2yz + z² + x² - 2zx)
= ½(x + y + z)(2x² + 2y² + 2z² - 2xy - 2yz - 2zx)
by taking 2 as a common we get
½ × 2(x + y + z) (x² + y² + z² - 2xy - 2yz - 2zx)
= (x + y + z) (x² + y² + z² - xy - yz - zx)
we know that,
x² + y² + z² - 3xyz = (x + y + z) (x² + y² + z² - xy - yz - zx)
so,
x² + y² + z² - 3xyz = ½(x + y + z)[(x - y)² + (y - z)² + (z - x)²]
proved