Math, asked by jass101, 1 year ago

answer this
it's too urgent
Please!!!

Attachments:

Answers

Answered by yash1067
1
this is answer of this question
Attachments:

DaIncredible: bro 2 will be divided by 8 and 2 both i guess
Answered by DaIncredible
15
Hey friend,
Here is the answer you were looking for:
a =  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }  \times  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  \\  \\  using \: the \: identities \\   {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {( \sqrt{5} )}^{2} +  {( \sqrt{3} )}^{2}  - 2( \sqrt{5})( \sqrt{3}   )}{ {( \sqrt{5}) }^{2} -  {( \sqrt{3} )}^{2}  }  \\  \\  =  \frac{5 + 3 - 2 \sqrt{15} }{5 - 3}  \\  \\  =  \frac{8 - 2 \sqrt{15} }{2}  \\  \\  = 4 -  \sqrt{15}  \\  \\ b =  \frac{ \sqrt{5}   +   \sqrt{3} }{ \sqrt{5}   -   \sqrt{3} }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{ \sqrt{5}  +   \sqrt{3}  }{ \sqrt{5}  -   \sqrt{3}  }  \times  \frac{ \sqrt{5}  +   \sqrt{3}  }{ \sqrt{5}   +   \sqrt{3} }  \\  \\  using \: the \: identities \\   {(a  +  b)}^{2}  =  {a}^{2}  +  {b}^{2}   +  2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {( \sqrt{5} )}^{2} +  {( \sqrt{3} )}^{2}   +  2( \sqrt{5})( \sqrt{3}   )}{ {( \sqrt{5}) }^{2} -  {( \sqrt{3} )}^{2}  }  \\  \\  =  \frac{5 + 3  +  2 \sqrt{15} }{5 - 3}  \\  \\  =  \frac{8   +  2 \sqrt{15} }{2}  \\  \\  = 4  +   \sqrt{15}  \\  \\a + b + ab \\  \\  = (4  -   \sqrt{15} ) + (4 +  \sqrt{15} ) + (4 -  \sqrt{15} )(4 -  \sqrt{15} ) \\  \\  = 4 -  \sqrt{15}  + 4 +  \sqrt{15}  + ( {(4)}^{2}  -  {( \sqrt{15}) }^{2} ) \\  \\  = 4 + 4 + (16 - 15) \\  \\  = 4 +  4 + 1 \\  \\  = 9

Hope this helps!!!

@Mahak24

Thanks...
☺☺

jass101: brainlist answer
DaIncredible: huh?
DaIncredible: thanks for brainliest
Similar questions