Math, asked by aaravchughthemaster, 9 months ago

answer this maths question ​

Attachments:

Answers

Answered by amitkumar44481
9

AnsWer :

Option 2.

QuestioN :

Square of binomial ( 7x / 5 - 5y / 7 ) is

SolutioN :

We have, Expression.

 \tt \bullet  \:  \:  \: Square \: of \: binomial \Big( \frac{7x}{5} - \frac{5y}{7} \Big) \: is.

Compare With General Expression.

 \tt \bullet \:  \:  \: \sum\limits^{n}_{r= 0} {}^{n}C_r\,x^{n-r}\,y^r

Now, Putting given value.

 \tt:\implies\Big( \frac{7x}{5} - \frac{5y}{7} \Big)^{2}

Where as,

  • n = 2.

And, Let

  • x = 7x / 5.
  • y = 5y / 7.

\rule{90}3

According to Question,

When,

  • n = 2.
  • r = 0.

 \tt:\implies {}^{n}C_r\,x^{n-r}\,y^r

 \tt:\implies {}^{2}C_0\,x^{2-0}\,y^0

 \tt:\implies 1 \times x^{2} \times 1

 \tt:\implies  {x}^{2}

\rule{90}2

When,

  • r = 1.

 \tt:\implies {}^{2}C_1\,x^{2-1}\,y^1

 \tt:\implies {}^{2}C_1\,x^{1}\,y^1

 \tt:\implies {}^{2}C_1\,xy

We know,

  • nC1 = n.

 \tt:\implies 2xy

\rule{90}2

When,

  • r = 2.

 \tt:\implies {}^{2}C_2\,x^{2-2}\,y^2

 \tt:\implies {}^{2}C_2\,x^{0}\,y^2

 \tt:\implies {}^{2}C_2\,y^2

 \tt:\implies y^2

So, we can also write as,

 \tt \longrightarrow ( x - y )^n = [ x + ( - y ) ]^n

From above observation, we can write as.

 \tt \longrightarrow ( x - y )^2 = {x}^{2}  - 2xy +  {y}^{2}

★ Now,

 \tt:\implies\Bigg\lgroup \dfrac{7x}{5} - \dfrac{5y}{7} \Bigg\rgroup^{2}  =  { \Big(\dfrac{7x}{5} \Big)}^{2} -2.\Big( \dfrac{7x}{5} . \dfrac{5y}{7}\Big) -\Big( \dfrac{5y}{7} \Big)^2

 \tt:\implies\Bigg\lgroup \dfrac{7x}{5} - \dfrac{5y}{7} \Bigg\rgroup^{2}  =  \dfrac{49x^2}{25} -\dfrac{ \cancel{70xy}}{ \cancel{35}}  +\dfrac{25y^2}{49}

 \tt:\implies\Bigg\lgroup \dfrac{7x}{5} - \dfrac{5y}{7} \Bigg\rgroup^{2}  =  \dfrac{49x^2}{25} -2xy +\dfrac{25y^2}{49}

Therefore, the value of square of binomial ( 7x / 5 - 5y/ 7 ) is 49x² / 25 - 2xy + 25y² / 49.


Anonymous: Perfect explanation :)
amitkumar44481: Thanks :-)
Answered by chavvaanuradha0
0

Answer:

option 2 is the answer

hope it helps u

Similar questions