Math, asked by dayammohammad, 5 months ago



answer this plzz. I need help​

Attachments:

Answers

Answered by Anonymous
17

GiveN :

 \mapsto \:  \:  \sf \: A=\left[\begin {array}{cc} \sf1& \sf1\\ \sf \: 5& \sf \: 1\end{array}\right]

________________________

To FienD :

 \mapsto  \sf  \:  \: Adj \: \:  A= Adj \: \left[\begin {array}{cc} \sf1& \sf1\\ \sf \: 5& \sf \: 1\end{array}\right] =  {?}

________________________

SolutioN :

 \mapsto  \sf  \:  \: Adj \: \:  A= Adj \: \left[\begin {array}{cc} \sf1& \sf1\\ \sf \: 5& \sf \: 1\end{array}\right]

 \implies \:  \sf \:  Adj \: \left[\begin {array}{cc}  \: \sf  1& \sf \:  - 1\\ \sf \:  - 5&  \:  \:  \:  \: \sf \: 1\end{array}\right]

________________________

ConcepT BoosteR :

 \mapsto \sf Adjugate  \:  \: or \:   \: Adjoint \:   \: of \: \:   a \:   \: Matrix = \: transpose  \:  \: of  \:  \: its \:  \:  cofactor \\

 \mapsto \sf \: Relation \:  \:  between  \:  \: det \:  A  \:  \: and  \:  \: Adj \:  A  :  A^{-1} = \frac{Adj \:  A}{det  \: A} \\

_____________________

HOPE THIS IS HELPFUL...

Similar questions