Math, asked by JhonMicoSolas, 1 month ago

answer this problem ײ +9x + 14 =0​

Answers

Answered by anindyaadhikari13
14

\textsf{\large{\underline{Solution}:}}

Given Equation:

\rm: \longmapsto {x}^{2} + 9x + 14 = 0

By splitting the middle term, we get:

\rm: \longmapsto {x}^{2} + (7 + 2)x + 14 = 0

\rm: \longmapsto {x}^{2} +7x + 2x + 14 = 0

\rm: \longmapsto x(x +7) + 2(x + 7) = 0

\rm: \longmapsto (x+ 2)(x + 7) = 0

By zero product rule, we get:

\rm: \longmapsto \begin{cases} \rm (x+ 2) = 0 \\ \rm(x + 7) =0  \end{cases}

Therefore:

\rm: \longmapsto x =  - 2, - 7

So, the values of x satisfying the given equation are -2 and -7.

\textsf{\large{\underline{Verification}:}}

Put x = -2 in LHS, we get:

 \rm =  {( - 2)}^{2}  + 9 \times ( - 2) + 14

 \rm = 4 - 18 + 14

 \rm = 0

Put x = -7 in LHS, we get:

 \rm =  {( - 7)}^{2}  + 9 \times ( - 7) + 14

 \rm =  49 - 63+ 14

 \rm =  0

Hence, our answers are correct (Verified).

\textsf{\large{\underline{Final Answer}:}}

  • The values of x satisfying the given equation are -2 and -7.
Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
92

Equation given to us:

  • x² + 9x + 14

Using Formula,

Quadratic formula:-

  • \purple{ \underline{{\boxed{ \bf{x \:  =  \:  \dfrac{ - b± \sqrt{b {}^{2} - 4ac }  }{2a} }}}}}

Here we have:

  • a is 1
  • b is 9
  • c is 14

Substituting the values:

  \longrightarrow \:  \sf{x \:  =   \:  \dfrac{ - 9± \sqrt{(9) {}^{2} - 4(1)(14) } }{2(1)} }

 \longrightarrow \:  \sf{x \:  =   \:  \dfrac{ - 9± \sqrt{(9) {}^{2} - 4 \times 1 \times 14} }{2(1)} }

  \longrightarrow \:  \sf{x \:  =   \:  \dfrac{ - 9± \sqrt{(9) {}^{2} - 4 \times 1 \times 14} }{2 \times 1} }

\longrightarrow \:  \sf{x \:  =   \:  \dfrac{ - 9± \sqrt{(9) {}^{2} - 4\times 14} }{2 } }

\longrightarrow \:  \sf{x \:  =   \:  \dfrac{ - 9± \sqrt{(9) {}^{2} - 56} }{2 } }

 \longrightarrow \:  \sf{x \:  =   \:  \dfrac{ - 9± \sqrt{(9 \times 9)- 56} }{2 } }

\longrightarrow \:  \sf{x \:  =   \:  \dfrac{ - 9± \sqrt{(81)- 56} }{2 } }

  \longrightarrow \:  \sf{x \:  =   \:  \dfrac{ - 9± \sqrt{81- 56} }{2 } }

\longrightarrow \:  \sf{x \:  =   \:  \dfrac{ - 9± \sqrt{25} }{2 } }

  \longrightarrow \:  \sf{x \:  =   \:  \dfrac{ - 9 \: ± \:5 }{2 } }

Now,

:   \leadsto\:  \sf{x \:  =   \:  \dfrac{ - 9 \:  -  \:5 }{2 } }

:   \leadsto\:  \sf{x \:  =   \:  \dfrac{  - 14 }{2 } }

:   \leadsto\:  \sf{x \:  =   \:   \cancel\dfrac{  - 14 }{2 } }

:   \leadsto\:   \large\pink{ \underline{ \boxed{ \bf{x \:  =   \:   - 7 }}}}

Also,

:   \leadsto\:  \sf{x \:  =   \:  \dfrac{ - 9 \:  +  \:5 }{2 } }

:   \leadsto\:  \sf{x \:  =   \:  \dfrac{  - 4 }{2 } }

:   \leadsto\:  \sf{x \:  =   \:   \cancel\dfrac{  - 4 }{2 } }

: \leadsto \:   \large\pink{ \underline{ \boxed{ \bf{x \:  =   \:   - 2 }}}}

  •  \underline{ \bf{Hence, \: the \: two \: values \: of \: x \: are \:  - 2 \: and \:  - 7}}

Additional Information:

  • An equation which has only one variable in which highest power of variable is two, is known as quadratic equation.
  • The standard form of a quadratic equation is ax²+bx+c = 0, where a, b and c are all real numbers.

Discriminant formula:-

  • D = b² - 4ac

Here,

  • D is discriminant
Similar questions