Physics, asked by aarzoo261, 10 months ago

answer this question....​

Attachments:

Answers

Answered by Anonymous
11

\huge\underline{\underline{\bf \orange{Question-}}}

The de-Broglie wavelength associated with electrons revolving round the nucleus in a hydrogen atom in ground state will be ⎯

\huge\underline{\underline{\bf \orange{Solution-}}}

\large\underline{\underline{\sf Given:}}

  • n for ground state = 1
  • Z for hydrogen atom = 1

\large\underline{\underline{\sf To\:Find:}}

  • de-Broglie Wavelength {\sf (\lambda)}

We know that -

de-Broglie Wavelength -

\large{\boxed{\bf \blue{\lambda=\dfrac{h}{p}} }}

p = mv = momentum

h = Planck's Constant

According to Bohr -

\large{\boxed{\bf \blue{mvr=\dfrac{nh}{2π}} }}

We can write = mv = p

So ,

\implies{\sf pr = \dfrac{nh}{2π}}

\implies{\sf p = \dfrac{1×h}{2π} }

\implies{\sf \pink{p = \dfrac{h}{2π}}}

On Putting Value of p -

\implies{\sf \lambda = \dfrac{h}{\dfrac{h}{2πr}} }

\implies{\sf \lambda = 2πr }

We know ,

\large{\boxed{\bf \blue{r=0.53×\dfrac{n^2}{Z}} }}

\implies{\sf r = 0.53×\dfrac{1^2}{1}}

\implies{\sf \pink{r=0.53A°} }

On Putting Value of r ⎯

\implies{\sf \lambda = 2πr}

\implies{\sf \lambda = 2×3.14×0.53 }

\implies{\bf \red{\lambda = 3.3A°}}

\huge\underline{\underline{\bf \orange{Answer-}}}

Option (2) 3.3A°

The de-Broglie wavelength associated with electrons revolving round the nucleus in a hydrogen atom in ground state will be {\bf \red{3.3A°}}.

Similar questions