Math, asked by Anonymous, 10 months ago

Answer this Question (◍•ᴗ•◍)❤​

Attachments:

Answers

Answered by Anonymous
18

 \large\bf\underline{Question:-}

In the given figure PQ and RS are two perpendicular diameters of the circle with centre O. If OP = 28 cm ,find the area of shaded region.

━━━━━━━━━━━━━━━━━

 \large\bf\underline{Given:-}

  • OP = 28cm

 \large\bf\underline {To \: find:-}

  • Area of shaded region

 \huge\bf\underline{Solution:-}

OP = 28cm which is the Radius of the given circle.

We know that,

  • Area of circle = πr²

➝ Area of circle = 22/7×(28)²

➝ Area of circle = 22/7×784

➝ Area of circle = 22×112

Area of circle = 2464 cm²

Circle contains a rhombus of diagonals PQ and RS

➝ PQ = PO + QO

➝ PQ = 28 + 28

➝ PQ = 56

➝ PQ = RS (diameter of circle)

  • Area of rhombus = 1/2(diagonal1× diagonal 2)

➝ Area of rhombus = 1/2(PQ × RS)

➝ Area of rhombus = 1/2(56×56)

➝ Area of rhombus = 1/2(3136)

Area of rhombus = 1568sq.units

Area of shaded region = Area of circle - area of rhombus /2

➝ Area of shaded region = 2464-1568/2

➝ Area of shaded region = 896/2

Area of shaded region = 448cm²

Hence , Area of shaded region = 448cm²

━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Answered by Anonymous
8

\sf\blue{Question}

\sf{In \ the \ figure \ PQ \ and \ RS \ are \ the \ two}

\sf{perpendicular \ diameters \ of \ the \ circle \ with}

\sf{centre \ 'O'. \ If \ OP=28 \ cm, \ find \ the \ area}

\sf{of \ the \ shaded \ region.}

__________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{Area \ of \ shaded \ region \ is \ 448 \ cm^{2}}

\sf\orange{Given:}

\sf{In \ circle \ with \ center \ O,}

\sf{\implies{PQ \ and \ RS \ are \ perpendicular \ diameters.}}

\sf{\implies{OP=28 \ cm}}

\sf\pink{To \ find:}

\sf{The \ area \ of \ the \ shaded \ region.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Radius(OP)=28 \ cm...given}

\boxed{\sf{Area \ of \ semicircle=\frac{\pi\times \ r^{2}}{2}}}

\sf{\therefore{Area \ of \ semicircle=\frac{\frac{22}{7}\times28\times28}{2}}}

\sf{Area \ of \ semicircle=22\times2\times28}

\sf{Area \ of \ semicircle=1232 \ cm^{2}}

\sf{\therefore{Area \ of \ sector \ RPS=1232 \ cm^{2}}}

\sf{In \ \triangle \ RPS,}

\sf{RS=2\times28=56 \ cm...RS \ is \ diameter}

\sf{\angle \ POR=90°...RS \ and \ PQ \ are \ perpendicular}

\sf{Area \ of \ \triangle \ RPS=\frac{1}{2}\times \ Base\times \ Height}

\sf{A(\triangle \ RPS)=\frac{1}{2}\times \ RS\times \ OP}

\sf{A(\triangle \ RPS)=\frac{1}{2}\times56\times28}

\sf{A(\triangle \ RPS)=28\times28}

\sf{\therefore{A(\triangle \ RPS)=784 \ cm^{2}}}

\sf{Area \ of \ shaded \ region}

\sf{=Area \ of \ semicircle \ - \ A(\triangle \ RPS)}

\sf{=1232-784}

\sf{=448 \ cm^{2}}

\sf\purple{\tt{\therefore{Area \ of \ shaded \ region \ is \ 448 \ cm^{2}}}}

Attachments:
Similar questions