Math, asked by rashaarashid78600, 6 months ago


answer this question.​

Attachments:

Answers

Answered by elangoramrajxc
0

hope you understand the answer

Attachments:
Answered by MaIeficent
9

Step-by-step explanation:

Question:-

If x = a + 1/a and y = a - 1/a then find the value of x⁴ + y⁴ - 2x²y²

Given:-

  •  \sf x =  a +  \dfrac{1}{a}  \: \: , \:   \: y = a -  \dfrac{1}{a}

To Find:-

  • The value of x⁴ + y⁴ - 2x²y²

Formula used:-

  • (x + y)² = x² + y² + 2ab

  • (x - y)² = x² + y² - 2ab

Solution:-

x⁴ + y⁴ - 2x²y² is in the form x² + y² - 2xy

\sf  {x}^{4}  +  {y}^{4}  - 2 {x}^{2} {y}^{2}  = ( {x}^{2}  -  {y}^{2})^{2}

  •  \sf x =  a +  \dfrac{1}{a}

  • \sf y = a -  \dfrac{1}{a}

\:

\sf   =  ( {x}^{2}  -  {y}^{2})^{2}

\sf   =   \Bigg[ { \bigg(a +  \dfrac{1}{a}} \bigg)^{2}  -{\bigg(a  -  \dfrac{1}{a}} \bigg)^{2}  \Bigg] ^{2}

\sf   =   \Bigg[ { \bigg( {a}^{2} +  \dfrac{1}{ {a}^{2} } + 2 {(a}^{2}  ) \times   \dfrac{1}{ {a}^{2} }  } \bigg)  -{\bigg( {a}^{2} +  \dfrac{1}{ {a}^{2} }  -  2 {(a}^{2}  ) \times   \dfrac{1}{ {a}^{2} }  } \bigg)  \bigg] ^{2}

\sf   =   \Bigg[ { \bigg( {a}^{2} +  \dfrac{1}{ {a}^{2} } + 2   } \bigg)  -{\bigg( {a}^{2} +  \dfrac{1}{ {a}^{2} }  -  2   } \bigg)  \bigg] ^{2}

\sf   =   \Bigg[ {  {a}^{2} +  \dfrac{1}{ {a}^{2} } + 2   }  -{ {a}^{2}  - \dfrac{1}{ {a}^{2} }   +   2   } \bigg] ^{2}

\sf   =   \Bigg[ {  {a}^{2}  -  {a}^{2} +  \dfrac{1}{ {a}^{2} } - \dfrac{1}{ {a}^{2} }    + 2+   2   } \bigg] ^{2}

\sf   =   {(2 + 2)}^{2}

\sf   =   {4}^{2}  = 16

\dashrightarrow \large\underline{\boxed{\sf \therefore  {x}^{4}  +  {y}^{4}  - 2 {x}^{2} {y}^{2} = 16}}

\star \: \underline{\textsf{\textbf{ The \: Answer \: is\: Option \: (c)}}}

Similar questions