answer this question
Attachments:
Answers
Answered by
1
To prove:-
sec^4θ-sec^2θ=tan^4θ+tan^2θ
Solution:-
L.H.S
-------
sec^4θ-sec^2θ
=(sec^2θ)^2-(1+tan^2θ)(Since,1+tan^2θ=sec^2θ)
=(1+tan^2θ)^2-1-tan^2θ
=(1)^2+2.1.tan^2θ+(tan^2θ)^2-1-tan^2θ
=1+2tan^2θ+tan^4θ-1-tan^2θ
=tan^4θ+tan^2θ
=R.H.S
Proved.
Thanks.
Mark as Brainliest answer.
sec^4θ-sec^2θ=tan^4θ+tan^2θ
Solution:-
L.H.S
-------
sec^4θ-sec^2θ
=(sec^2θ)^2-(1+tan^2θ)(Since,1+tan^2θ=sec^2θ)
=(1+tan^2θ)^2-1-tan^2θ
=(1)^2+2.1.tan^2θ+(tan^2θ)^2-1-tan^2θ
=1+2tan^2θ+tan^4θ-1-tan^2θ
=tan^4θ+tan^2θ
=R.H.S
Proved.
Thanks.
Mark as Brainliest answer.
Similar questions