answer this question
Answers
Answer:
Given,
radius of curvature, \sf{r=1\ km=1000\ m}r=1 km=1000 m
distance between the rails, \sf{d=1\ m.}d=1 m.
speed of the train, \sf{v=36\ km\,h^{-1}=10\ m\,s^{-1}}v=36 kmh
−1
=10 ms
−1
Let \sf{g=10\ m\,s^{-2}.}g=10 ms
−2
.
There would be no side pressure against the rails when the train moves along the rail with maximum safe speed, which is given by,
\sf{\longrightarrow v^2=rg\tan\theta}⟶v
2
=rgtanθ
Then the angle of elevation will be,
\sf{\longrightarrow \theta=\tan^{-1}\left(\dfrac{v^2}{rg}\right)}⟶θ=tan
−1
(
rg
v
2
)
\sf{\longrightarrow \theta=\tan^{-1}\left(\dfrac{10^2}{1000\times10}\right)}⟶θ=tan
−1
(
1000×10
10
2
)
\sf{\longrightarrow \theta=\tan^{-1}\left(\dfrac{1}{100}\right)}⟶θ=tan
−1
(
100
1
)
\sf{\longrightarrow \theta=0.01\ rad}⟶θ=0.01 rad
Then the elevation of outer rail will be given by,
\sf{\longrightarrow h=d\sin\theta}⟶h=dsinθ
\sf{\longrightarrow h=1\times\sin(0.01)}⟶h=1×sin(0.01)
\sf{\longrightarrow\underline{\underline{h=0.01\ m}}}⟶
h=0.01 m