Math, asked by Anonymous, 8 months ago

Answer this question and if you don't know how to then Don't wait for your answer to be reported​

Attachments:

Answers

Answered by Anonymous
44

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

{\star \: {\sf{ \: \bigg[ \frac{1}{ {(27)}^{ \frac{ - 1}{3}  }  }   +  \frac{1}{ {(625)}^{ \frac{ - 1}{4} } } \bigg]   }}} \\ \\

{\bf{\blue{\underline{Concept\:Used:}}}}

 \star{\sf{ \:  \:  \:  {x}^{ \frac{p}{q} } =  {x}^{p \times  \frac{1}{q} }  }} \\  \\

 \implies{\sf{ \:  \:  \:  {x}^{ \frac{p}{q} } =  {[(x)^{p} ]}^{  \frac{1}{q} }  }} \\  \\

 \star{\sf{ \:  \:  \:  {x}^{  m} =    \frac{1}{ {x}^{-m} }   }} \\  \\

{\bf{\blue{\underline{Now:}}}}

we know that ,

  • (3)³=27
  • (5)⁴=625

 :  \implies{\sf{ \frac{1}{[( {3)}^{3}] ^{ \frac{ - 1}{3} } } +  \frac{1}{[( {5)}^{4} ]^{ \frac{ - 1}{4} } }  }} \\  \\

 : \implies{\sf{  \frac{1}{(3) ^{ \frac{ - 3}{3} } }   +  \frac{1}{(5) ^{ \frac{ - 4}{4} } } }} \\  \\

 : \implies{\sf{  \frac{1}{(3) ^{  - 1 } }   +  \frac{1}{(5) ^{  - 1} } }} \\  \\

  : \implies{\sf{  3 + 5 }} \\  \\

  : \implies{\sf{  8 \: Ans}} \\  \\

Answered by mysticd
3

 Given \: \frac{1}{(27)^{\frac{-1}{3}} }+ \frac{1}{625)^{\frac{-1}{4}}}

 = (27)^{\frac{1}{3}} + (625)^{\frac{1}{4}}

_________________

By Exponential Law :

 \blue { \frac{1}{a^{-n}} = a^{n} }

__________________

 = (3^{3})^{\frac{1}{3}}+ (5^{4})^{\frac{1}{4}}

 = (3)^{3 \times \frac{1}{3}}+ (5)^{4 \times \frac{1}{4}}

_________________

By Exponential Law :

 \pink  {( a^m)^{n} = a^{m \times n} }

__________________

 = 3 + 5 \\= 8

Therefore.,

 \red{\frac{1}{(27)^{\frac{(-1)}{3}}} + \frac{1}{(625)^{\frac{(-1)}{4}}}}

 \green {= 8}

•••♪

Similar questions