Answer this question correctly ✌.
Do one of them ✅
Answers
Answer:
here x = √5 +2
we have to fine find
put x = √5 + 2
using identity (a+b)² = a² + b² + 2ab
on rationalising
Step-by-step explanation:
hope it helps...
Answer :
A) (x + 1/x)² = 20
B) a = 27/22 , b = 1/22
Solution :
- A) If x = √5 + 2 , then (x + 1/x)² = ?
We have ,
x = √5 + 2
Thus ,
1/x = 1/(√5 + 2)
Now ,
Rationalising the denominator of the term in RHS , we get ;
=> 1/x = (√5 - 2)/(√5 + 2)(√5 + 2)
=> 1/x = (√5 - 2)/[(√5)² - 2²]
=> 1/x = (√5 - 2)/(5 - 4)
=> 1/x = (√5 - 2)/1
=> 1/x = √5 - 2
Now ,
=> (x + 1/x)² = [(√5 + 2) + (√5 - 2)]²
=> (x + 1/x)² = (2√5)²
=> (x + 1/x)² = 20
- B) If (7 + √5)/(7 - √5) = a + 7√5b , then a , b = ?
We have ;
(7 + √5)/(7 - √5) = a + 7√5b
Now ,
Rationalising the denominator of the term in LHS , we get ;
=> (7 + √5)²/(7 - √5)(7 + √5) = a + 7√5b
=> [7² + (√5)² + 2•7•√5]/[7² - (√5)²] = a + 7√5b
=> (49 + 5 + 14√5)/(49 - 5) = a + 7√5b
=> (54 + 14√5)/44 = a + 7√5b
=> 54/44 + 14√5/44 = a + 7√5b
=> 27/22 + 7√5/22 = a + 7√5b
=> 27/22 + 7√5•(1/22) = a + 7√5b
Now ,
Comparing both the sides , we get ;
a = 27/22 , b = 1/22