Math, asked by Itzbrainlystar30, 4 months ago

Answer this question correctly ✌.

Do one of them ✅​

Attachments:

Answers

Answered by UrAddiction
4

Answer:

here x = √5 +2

we have to fine find

( \frac{x + 1}{x} )^{2}

put x = √5 + 2

  (\frac{ \sqrt{5} + 2 + 1 }{ \sqrt{5} + 2 } ) ^{2}

( \frac{ \sqrt{5} + 3 }{ \sqrt{5}  + 2} ) ^{2}

using identity (a+b)² = a² + b² + 2ab

 \frac{5 + 9 + 6 \sqrt{5} }{5 + 4 + 4 \sqrt{5} }

 \frac{14 + 6 \sqrt{5} }{9 + 4 \sqrt{5} }

on rationalising

 \frac{14 + 6 \sqrt{5} }{9 + 4 \sqrt{5} }   \times  \:  \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }

 \frac{126  -  56 \sqrt{5}    +  54 \sqrt{5} - 120}{81 + 80}

\frac{6 - 2 \sqrt{5} }{161}

Step-by-step explanation:

hope it helps...

Answered by AlluringNightingale
15

Answer :

A) (x + 1/x)² = 20

B) a = 27/22 , b = 1/22

Solution :

  • A) If x = √5 + 2 , then (x + 1/x)² = ?

We have ,

x = √5 + 2

Thus ,

1/x = 1/(√5 + 2)

Now ,

Rationalising the denominator of the term in RHS , we get ;

=> 1/x = (√5 - 2)/(√5 + 2)(√5 + 2)

=> 1/x = (√5 - 2)/[(√5)² - 2²]

=> 1/x = (√5 - 2)/(5 - 4)

=> 1/x = (√5 - 2)/1

=> 1/x = √5 - 2

Now ,

=> (x + 1/x)² = [(√5 + 2) + (√5 - 2)]²

=> (x + 1/x)² = (2√5)²

=> (x + 1/x)² = 20

  • B) If (7 + 5)/(7 - 5) = a + 75b , then a , b = ?

We have ;

(7 + √5)/(7 - √5) = a + 7√5b

Now ,

Rationalising the denominator of the term in LHS , we get ;

=> (7 + √5)²/(7 - √5)(7 + √5) = a + 7√5b

=> [7² + (√5)² + 2•7•√5]/[7² - (√5)²] = a + 7√5b

=> (49 + 5 + 14√5)/(49 - 5) = a + 7√5b

=> (54 + 14√5)/44 = a + 7√5b

=> 54/44 + 14√5/44 = a + 7√5b

=> 27/22 + 7√5/22 = a + 7√5b

=> 27/22 + 7√5•(1/22) = a + 7√5b

Now ,

Comparing both the sides , we get ;

a = 27/22 , b = 1/22


amansharma264: Superb
Similar questions