Math, asked by Anonymous, 10 months ago

Answer this question (◍•ᴗ•◍)❤
Don't give answers if you don't know !!​

Attachments:

Answers

Answered by ramlaxman24
1

Answer:

Given :- a point (6,a) divides the line segment (-3,-1) and(-8,9) in a ratio of k:1

then(6,a)=(k(-8)+1(-3))/k+1,(k(9)+1(-1))/k+1)

6=-8k-3/k+1

k=-9/14

a=9k-1/k+1

=(-19/4(9)-1)/(-9/14+1)

a =-19

Step-by-step explanation:

HOPE YOU understand

THANK YOU

Answered by Anonymous
7

 \large\bf\underline{Question:-}

A point (6,a) divides the line joining A(-3,-1) and B(-8,9) in the ratio k:1 .find the value of a and k.

━━━━━━━━━━━━━━

 \large\bf\underline{Given:-}

A point (6,a) divides the line joining A(-3,-1) and B(-8,9) in the ratio of k:1

 \large\bf\underline {To \: find:-}

Value of a and k.

 \huge\bf\underline{Solution:-}

Let point P(6,a) divides the joining of the A(-3,-1) and B(-8,9) in tge ratio of k:1.

Section formula:-

 \boxed{ \bf \frac{m_1x_2+m_2x_1}{m_1+m_2},\frac{m_1y_2+m_2y_1}{m_1+m_2} }

Let m1 = k and m2 = 1

By section formula cordinates of P

 \mapsto \rm \:p(\frac{k\times-8+1\times-3}{k+1},\frac{k\times9+1\times-1}{k+1})\\

 \mapsto \rm \:p(\frac{-8k-3}{k+1},\frac{9k-1}{k+1})

Case (i) :-

  • for x cordinate

\rm \mapsto6 =  \frac{   - 8k - 3}{k + 1} \\  \\ \rm \mapsto6(k + 1) =  - 8k - 3 \\  \\ \rm \mapsto6k + 6 =  - 8k - 3 \\  \\ \rm \mapsto6k + 8k =  - 3 - 6 \\  \\ \rm \mapsto14k = -  9 \\  \\ \rm \mapsto \: k =  \frac{ - 9}{14}

Case (ii) :-

for y cordinate

 \mapsto  \: \sf a =  \dfrac{9 \times \dfrac{-9}{14}-1}{\dfrac{ - 9}{14} +1} \\  \\ \:  \mapsto  \rm \: a = \dfrac{\dfrac{ - 81 - 14}{14}}{\dfrac{ - 9 + 14}{14}} \\  \\  \rm \mapsto \: a = \dfrac{\dfrac{ - 95}{14}}{\dfrac{ 5}{14}} \\  \\  \rm \mapsto \:  a = \frac{ - 95}{14}  \times  \frac{14}{5}  \\  \\ \rm \mapsto  \: a = \cancel\frac{ - 95}{5} \\\\\bf \mapsto \:a = -19

Hence,

Value of a = -19 and k = -9/14

Similar questions