Math, asked by bhoomibisht21, 8 months ago

answer this question fast...​

Attachments:

Answers

Answered by hemanthnisme11
0

Answer:

Zero

Step-by-step explanation:

x+y=4

Cube on both the sides

x^{3} + y^{3}+ 3xy(x+y)=64

x^{3} +y^{3}+12xy=64

Thus,x^{3} +y^{3}+12xy-64=0

Answered by Anonymous
42

\sf\large\green{\underline { identity \: used....}} \\  \\ \sf\large\green{\underline { }}( {a + b)}^{3}  =  {a}^{3}  + 3 {a}^{2} b + 3a {b}^{2}  +  {b}^{3}  \\  \\

\sf\large\green{\underline { solution : -  }} \\  \\ \sf\large\green{\underline { }}(x + y) = 4 \\  \\ \sf\large\green{\underline { }}cubing \: both \: the \: sides... \\  \\ ( {x + y)}^{3}  =  {4}^{3}  \\  \\ \sf\large\green{\underline { }} {x}^{3}  + 3 {x}^{2} y + 3x {y}^{2}  +  {y}^{3}  = 64 \\  \\ \sf\large\green{\underline { }} {x}^{3}  + 3xy(x + y) +  {y}^{3}  = 64 \\  \\ \sf\large\green{\underline { }} {x}^{3}  + 3xy(4) +  {y}^{3}  - 64 = 0 \\  \\ \sf\large\green{\underline {    {x}^{3}  + 12xy +  {y}^{3}  - 64 = 0 }} \\  \\ \sf\large\red{ the  \:answer \: is \: 0 .}

Similar questions