Math, asked by ramlaxman24, 11 months ago

answer this question friends ​

Attachments:

Answers

Answered by saounksh
1

Answer:

1) \:  \frac{n(n + 1)}{2}

EXPLAINATION

FORMULA

 lim_{x -  > a}( \frac{ {x}^{n}  -  {a}^{n} }{x - a} )  = n {a}^{n - 1}

CALCULATION

 lim_{x -  > 1}( \frac{x +  {x}^{2} +  {x}^{3}   + ....... +  {x}^{n}  - n}{x - 1} )

lim_{x -  > 1}( \frac{x  - 1+  {x}^{2} - 1 +  {x}^{3}  - 1  + ....... +  {x}^{n} - 1}{x - 1} )

lim_{x -  > 1}( \frac{x - 1}{x - 1} +  \frac{ {x}^{2} - 1 }{x - 1}   +  \frac{ {x}^{3}  - 1}{x - 1} + ..... +    \frac{ {x}^{n}  - 1}{x - 1} )

1 + lim_{x -  > 1}( \frac{ {x}^{2}  - 1}{x - 1} ) + lim_{x -  > 1}( \frac{ {x}^{3}  - 1}{x - 1} )... + lim_{x -  > 1}( \frac{ {x}^{n} - 1 }{x - 1} )

 1 + 2. {1}^{1}  + 3. {1}^{2}  + 4. {1}^{3}  + ..n. {1}^{n - 1}

1 + 2 + 3 + 4 + ...... + n

 =  \frac{n(n + 1)}{2}

Similar questions