Math, asked by karthiknayak11, 1 year ago

✔️ANSWER THIS.
QUESTION IS IN THE ATTACHMENT.✔️


❌NO SCAM❌​

Attachments:

Answers

Answered by shadowsabers03
4

\huge \texttt{Proof...}

\Large \textsf{LHS...}

\displaystyle \Longrightarrow\ \ \frac{\sin\theta-\cos\theta+1}{\sin\theta+\cos\theta-1} \\ \\ \\ \Longrightarrow\ \ \frac{(\sin\theta-\cos\theta+1)\sec\theta}{(\sin\theta+\cos\theta-1)\sec\theta} \\ \\ \\ \Longrightarrow\ \ \frac{\tan\theta-1+\sec\theta}{\tan\theta+1-\sec\theta} \\ \\ \\ \Longrightarrow\ \ \frac{(\tan\theta+\sec\theta-1)(\sec\theta-\tan\theta)}{(\tan\theta-\sec\theta+1)(\sec\theta-\tan\theta)}

\displaystyle \Longrightarrow\ \ \frac{(\sec\theta+\tan\theta)(\sec\theta-\tan\theta)-(\sec\theta-\tan\theta)}{(\tan\theta-\sec\theta+1)(\sec\theta-\tan\theta)} \\ \\ \\ \Longrightarrow\ \ \frac{\sec^2\theta-\tan^2\theta-\sec\theta+\tan\theta}{(\tan\theta-\sec\theta+1)(\sec\theta-\tan\theta)} \\ \\ \\ \Longrightarrow\ \ \frac{\tan\theta-\sec\theta+1}{(\tan\theta-\sec\theta+1)(\sec\theta-\tan\theta)} \\ \\ \\ \Longrightarrow\ \ \frac{1}{\sec\theta-\tan\theta}

\Longrightarrow\ \ \Large \textsf{...RHS}

\Huge \textsc{\underline{\underline{Hence Proved!!!}}}


karthiknayak11: thank you but i cannot understand
Similar questions