Math, asked by payal138, 1 year ago

answer this question........ N plzzz explain it.

Attachments:

Answers

Answered by vaishalisharma5
0
can I ask in which class you are

payal138: 10
vaishalisharma5: OK let me do it first
vaishalisharma5: ty for your help
Answered by tnwramit1
2
Given
 \frac{ \sin ^{4} x }{2}  +  \frac{ \cos ^{4}  x }{3}  =   \frac{1}{5}
Using sin²@+cos²@=1

Cos²@=1-sin²@

We get

 \frac{ \sin ^{4} x }{2}  +  \frac{(1 -  \sin^{2}x )^{2}  }{3} =  \frac{1}{5}
Let put sinx= a

 \frac{a ^{4} }{2}  +  \frac{(1 - a ^{2}) ^{2}  }{3}  =  \frac{1}{5}
 \frac{3a ^{4} + 2(1 - a ^{2}) ^{2}   }{6}  =  \frac{1}{5}
15a⁴+10(1-a²)²=6

Using (x-y) ²=x²+y²-2xy

15a⁴+10(1²+a⁴-2a²)=6

15a⁴+10+10a⁴-20a²-6=0

25a⁴-20a²+4=0

Using (x-y) ²= x²-2xy+y²

(5a²)²-2x2(5a²) +2²=0

(5a²-2) ²=0

5a²-2=0

a²=2/5

Replacing a² with sinx

Sin²x=2/5

1-cos²x=2/5

Cos²x=(2/5) - 1

Cos²x=3/5

Tan²x=sin²x/cos²x

=(2/5)/(3/5)

=2/3

Tan²x=2/3

So A=2

This is ur ans hope it will help you in case of any doubt comment below


payal138: plzzz answer my all questions plzzzz
tnwramit1: Shear the links
tnwramit1: I will try to solve
payal138: ok
tnwramit1: tnx for brainliest
Similar questions