Math, asked by bonani73, 8 months ago

answer this question of advance maths​

Attachments:

Answers

Answered by pulakmath007
0

\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p>

Let

 \frac{l}{x} =  \frac{m}{y}  =  \frac{n}{z}  = k \:

So,

l \:  = kx \: , m \:  = ky \: ,  \: n \:  = kz.........(1)

It is given that

  \displaystyle \: \frac{ {x}^{2} }{ {a}^{2} }   +   \frac{ {y}^{2} }{ {b}^{2} }   +   \frac{ {z}^{2} }{ {c}^{2} } = 1 ..........(2)

LHS

 = \displaystyle \: \frac{ {l}^{2} }{ {a}^{2} }   +   \frac{ {m}^{2} }{ {b}^{2} }   +   \frac{ {n}^{2} }{ {c}^{2} }

 = \displaystyle \: \frac{  {k}^{2} {x}^{2} }{ {a}^{2} }   +   \frac{  {k}^{2} {y}^{2} }{ {b}^{2} }   +   \frac{ {k}^{2}  {z}^{2} }{ {c}^{2} }  \:  \:  \:  \:  \: using(1)

  =  {k}^{2} ( \displaystyle \: \frac{ {x}^{2} }{ {a}^{2} }   +   \frac{ {y}^{2} }{ {b}^{2} }   +   \frac{ {z}^{2} }{ {c}^{2} })

 = {k}^{2}  \times 1 \:  \:  \:  \: using(2)

 =  {k}^{2}

RHS

 \displaystyle \:  \frac{ {l}^{2} +  {m}^{2}  +  {n}^{2}  }{ {x}^{2} +  {y}^{2}  +  {z}^{2}  }

 = \displaystyle \:  \frac{ {k}^{2}  {x}^{2} + {k}^{2}   {y}^{2}  +  {k}^{2}  {z}^{2}  }{ {x}^{2} +  {y}^{2}  +  {z}^{2} }  \:  \: using(1)

 =  \displaystyle \:  \frac{ {k}^{2} ({x}^{2} +  {y}^{2}  +  {z}^{2})}{{x}^{2} +  {y}^{2}  +  {z}^{2}}

 =  {k}^{2}

Hence

LHS = RHS

</p><p></p><p>\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}

Similar questions