Math, asked by gopalkrishnamahanta9, 6 hours ago

answer this question please

Attachments:

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\displaystyle\sf{\,^{n}C_{n-1}+\,^{n}C_{n-2}}

\displaystyle\sf{=\dfrac{n!}{(n-1)!(n-(n-1))!}+\dfrac{n!}{(n-2)!(n-(n-2))!}}

\displaystyle\sf{=\dfrac{n!}{(n-1)!(n-n+1)!}+\dfrac{n!}{(n-2)!(n-n+2)!}}

\displaystyle\sf{=\dfrac{n!}{(n-1)!(1)!}+\dfrac{n!}{(n-2)!(2)!}}

\displaystyle\sf{=\dfrac{n(n-1)!}{(n-1)!(1)!}+\dfrac{n(n-1)(n-2)!}{(n-2)!(2)!}}

\displaystyle\sf{=\dfrac{n}{1}+\dfrac{n(n-1)}{2}}

\displaystyle\sf{=n+\dfrac{n^2-n}{2}}

\displaystyle\sf{=\dfrac{2n+n^2-n}{2}}

\displaystyle\sf{=\dfrac{n^2+n}{2}}

\displaystyle\sf{=\dfrac{n(n+1)}{2}}

Similar questions