Math, asked by anand662047, 10 months ago

Answer this Question. The question is in the above photo

Attachments:

Answers

Answered by kaushik05
27

  \huge \purple{\mathfrak{solution}}

To find the value of :

 \boxed{ \bold{ \frac{ {tan}^{2} \theta -  {sec}^{2} \theta  }{ {cot}^{2} \theta -  {cosec}^{2}  \theta } }}

Take minus common from both numerator and denominator.

  \boxed{  \red\leadsto} \bold{\frac{ - ( {sec}^{2} \theta -  {tan}^{2} \theta)  }{ - ( {cosec}^{2} \theta -  {cot}^{2}  \theta) } } \\  \\  \boxed{ \red \leadsto} \frac{ - 1}{ - 1}  \\  \\  \boxed{ \red \leadsto} \: 1

Hence , the value is

 \huge \boxed{ \green{ \boxed{1}}}

Formula used :

 \boxed{  \bold{\blue{ {sec}^{2}  \theta -  {tan}^{2}  \theta = 1}}}

  \boxed{ \bold{ \pink{{cosec}^{2}  \theta -  {cot}^{2}  \theta = 1}}}

Answered by RvChaudharY50
66

Question :--

 \frac{ {tan}^{2} a -  {sec}^{2}a }{ {cot}^{2} a -  {cosec}^{2}a }

Formula used :---

  • sec²a - tan²a = 1
  • cosec²a - cot²a = 1

Solution :------

Taking (-1) common from numerator and denominator of Question we get,

 \frac{ ( \cancel - 1)({sec}^{2} a -  {tan}^{2}a) }{( \cancel - 1)( {cosec}^{2} a -  {cot}^{2}a )}  \\  \\ =  \frac{ ({sec}^{2} a -  {tan}^{2}a) }{( {cosec}^{2} a -  {cot}^{2}a )} \\  \\   =  \frac{1}{1}  = 1

(Hope it helps you)

Similar questions