Math, asked by jogendrasharma234, 5 months ago

Answer this question with proper reason and no unnecessary answer​

Attachments:

Answers

Answered by Vaibhav1230
0

Answer:

GivEn:

The Perimeter of a triangle is 450 m.

The ratio of sides of triangle are 13:12:15.

⠀⠀⠀⠀⠀⠀⠀

To find:

Area of triangle using Heron's formula.

⠀⠀⠀⠀⠀⠀⠀

Solution:

⠀⠀⠀⠀⠀⠀⠀

☯ Let sides of triangle be 13x, 12x and 5x.

⠀⠀⠀⠀⠀⠀⠀

\sf where \begin{cases} & \sf{a = \bf{13\;x}} \\ & \sf{b = \bf{12\;x}} \\ & \sf{c = \bf{5\;x}} \end{cases}\\ \\

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

The Perimeter of a triangle is 450 m.

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 13x + 12x + 5x = 450\\ \\

:\implies\sf 30x = 450\\ \\

:\implies\sf x = \cancel{ \dfrac{450}{30}}\\ \\

:\implies{\boxed{\frak{\pink{x = 15}}}}\;\bigstar\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━

Therefore,

⠀⠀⠀⠀⠀⠀⠀

a = 13x = 195 m

b = 12x = 180 m

c = 5x = 75 m

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Using\; Heron's\;Formula\;:}}}\\ \\

We know that,

⠀⠀⠀⠀⠀⠀⠀

\rightarrow\sf s = \dfrac{a + b + c}{2}\qquad\qquad\bigg\lgroup\bf s = semi - perimeter \bigg\rgroup\\ \\

\rightarrow\sf s = \dfrac{195 + 180 + 75}{2}\\ \\

\rightarrow\sf s = \cancel{ \dfrac{450}{2}}\\ \\

\rightarrow\bf \red{s = 225}\\ \\

Now,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Area_{\;(triangle)} = \sqrt{s(s - a)(s - b)(s - c)}}}}}\\ \\

:\implies\sf \sqrt{225(225 - 195)(225 - 180)(225 - 75)}\\ \\

:\implies\sf \sqrt{225(30)(45)(150)}\\ \\

:\implies\sf \sqrt{225 \times 202500}\\ \\

:\implies\sf \sqrt{45562500}\\ \\

:\implies\sf{\boxed{\frak{\pink{6750\;m^2}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;Area\;of\;triangle\;is\; \bf{6750}.}}}

Similar questions