Answer this too....using multiple angle formula.
Don't spam here.
Answers
Answer:
Step-by-step explanation:
LHS = cos^6 A + sin^6 A
= (cos²A)³ + (sin²A)³
Using identity-:
(a + b)³ = a³ +b³ + 3ab ( a+b)
=> a³ +b³ = ( a+ b)³ -3ab ( a+ b)
So, (cos²A)^3 + ( sin² A)^3
=(cos²A+ sin²A)^3 - 3 cos²A sin²A(cos²A+sin² A)
= 1- 3cos² A sin² A ( since sin² A + cos² A = 1 ) ……………….. LHS
Now, RHS = { 1 + 3cos² ( 2A)} / 4
= { 1 + 3 ( cos 2A )² } /4
= {1+ 3 ( cos² A - sin² A )² } /4 { since cos 2A = cos² A - sin² A) }
= { 1+ 3( cosA + sinA)² ( cosA - sinA)² }/4
= {1+ 3( 1 + 2sinA cosA) ( 1 - 2sinA cosA)} /4
= { 1 + 3 ( 1 - 4 sin² A cos² A) } / 4
= { 1 + 3 - 12 sin² A cos² A} /4
= (4 - 12 sin² A cos² A) /4
=> 1 - 3 sin²A cos ² A ………….. RHS
Hence proved that LHS = RHS
------------------------------------------------------------------------------------------------------
I am taking the second question as
1/sin10-√3/cos10 = 4
This is because you haven't given the value of "A" in sin2A
1/sin10-√3/cos10
= (cos10 - √3sin10)/cos10sin10
multiplying 1/2 in denominator and numerator
= {(cos10/2) - (√3sin10/2)}/(cos10sin10/2)
= (cos60cos10 - sin60sin10)/(cos10sin10/2)
= cos(60 + 10)/(cos10sin10/2)
= cos70/(cos10sin10/2)
= 2cos70/cos10sin10
multiplying 2 on numerator and denominator
= 4cos70/2sin10cos10
=4cos70/sin20
=4cos70/cos70
= 4 [proved]
Step-by-step explanation:
Hope the solution is clear. if not, then ask the question again with your specific doubts.