Math, asked by jasvirsinghdahoy3sgk, 10 months ago

answer thw ques...........​

Attachments:

Answers

Answered by Anonymous
11

Question :

How many terms of the the AP 63, 60, 57, ......  must be taken so that their sum is 693?

Answer :

Given :

63, 60, 57 , ......  are in AP

First term of the AP ( a ) = 63

Common difference of the AP ( d ) = a₂ - a₁ = 60 - 63 = - 3

Let the number of term in the AP  be ' n ' of which Sum is 693

Sum of ' n ' terms of the AP ( Sₙ ) = n/2 × [ 2a + ( n - 1 )d ]

⇒ n/2 × [ 2a + ( n - 1 )d ] = 693

⇒ n[ 2( 63 ) + ( n - 1 )( - 3 ) ] = 1386

⇒ n( 126 - 3n + 3 ) = 1386

⇒ n( 126 - 3n ) = 1386

⇒ 126n - 3n²= 1386

⇒ 3n² - 126n + 1386 = 0

Dividing every term by 3 we get,

⇒ n² - 42n + 462 = 0

⇒ n² - 21n - 22n + 462 = 0

⇒ n( n - 21 ) - 22( n - 21 ) = 0

⇒ ( n - 21 )( n - 22 ) = 0

⇒ n - 21 = 0   OR   n - 22 = 0

⇒ n = 21  OR  n = 22

∴ 21 or 22 terms must be taken so that their sum is 693.

Answered by Anonymous
7

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  • Ap:63,60,57
  • sn = 693

{\bf{\blue{\underline{Formula\:Used:}}}}

  \dagger  \:  \: \boxed{\sf{  s_{n}  =  \frac{n}{2}(2a + (n - 1)d) }} \\ \\

{\bf{\blue{\underline{Now:}}}}

 : \implies{\sf{ 693 =  \frac{n}{2} [2(63) + (n - 1) (- 3)]}} \\ \\

 : \implies{\sf{ 693 =  \frac{n}{2} [126 + ( - 3n  +  3) ]}} \\ \\

 : \implies{\sf{ 693  \times 2=  n[126 + ( - 3n  +  3) ]}} \\ \\

 : \implies{\sf{ 1386=  n[126 - 3n  +  3 ]}} \\ \\

 : \implies{\sf{ 1386=  126n - 3 {n}^{2}   +  3n }} \\ \\

 : \implies{\sf{   3 {n}^{2}    -  3n - 126n  + 1386 = 0}} \\ \\

 : \implies{\sf{   3 {n}^{2}    - 129n  + 1389 = 0}} \\ \\

Divide by 3,

 : \implies{\sf{    {n}^{2}   -43n + 462= 0}} \\ \\

 : \implies{\sf{    {n}^{2}  - 21n-22n +462=0}} \\ \\

 : \implies{\sf{ n(n- 21) -22(n - 21) =0}} \\ \\

 : \implies{\sf{ (n- 21) (n - 22)=0 }} \\ \\

therefore,

 : \implies{\sf{ n- 21= 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  n   - 22 = 0 }} \\ \\

 : \implies{  \boxed{ \sf{n= 21}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ { \sf{n    = 22}}} \\ \\

Similar questions