Math, asked by dezisantosh, 6 months ago

answer with full processs



Attachments:

Answers

Answered by Anonymous
66

→ Total weight -

19 \frac{1}{3}  \:  =  \:  \frac{58}{3} kg

→ Weight of apples -

8 \frac{1}{9}  \:  = \frac{73}{9} kg

→ Weight of oranges -

3 \frac{1}{6} kg =  \frac{19}{6} kg

→ Let, weight of pears be 'x'

So, we got an simple equation to compute, i.e -

weight of all the fruits = total weight

 \frac{73}{9}  +  \frac{19}{6}  + x \:  =  \frac{58}{3} \\  \\  \frac{146 + 57}{18}  + x =  \frac{58}{3}  \\  \\  \frac{203}{18}  + x =  \frac{58}{3}  \\  \\ x =  \frac{58}{3}  -  \frac{203}{18}  \\  \\ x =  \frac{348 - 203}{18}  \\  \\ x = \frac{145}{18}  = 8 \frac{1}{18} kg

∴ weight of pears = x = 8 ⅛ kg

--------✨HOPE IT HELPS✨--------

stay blessed !!

stay happy and safe too !!

Answered by Flaunt
22

\huge\tt{\bold{\underline{\underline{Given᎓}}}}

Total weights of the fruits =19  \frac{1}{3} kg

weights of apples=8  \frac{1}{9} kg

weights of oranges =3  \frac{1}{6}kg

To find :

weight of pears ..??

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

Step by step explanation:

Total weight of the fruits =19  \frac{1}{3} kg =  \frac{58}{3} kg

Weight of apples=8  \frac{1}{9} kg =  \frac{73}{9} kg

weights of oranges =3  \frac{1}{6}  =  \frac{19}{6} kg

let the weight of the pears be 'x'

According to the question:-

 =  >  \frac{73}{9}  +  \frac{19}{6}  + x =  \frac{58}{3}

L.C.M OF 9 & 6 IS 18

 =  >  \frac{73 \times 2 + 19  \times 3}{18}   + x =  \frac{58}{3}

 =  >  \frac{146 + 57}{18}  + x =  \frac{58}{3}

 =  >  \frac{203}{18}  + x =  \frac{58}{3}

 =  > x =  \frac{58}{3}  -  \frac{203}{18}

L.C.M OF 3&18 IS 18

 =  >  \frac{58 \times 6 - 203}{18} =  \frac{348 - 203}{18}

 =  \frac{145}{18}  = 18 \frac{1}{8} kg

Therefore, \bold{\red{18 \frac{1}{8} kg}} is the weight of the pears

Similar questions