Math, asked by vibhanshu8441, 1 year ago

answer with photos if a + b + C is equal to 9 and a square + b square + c square is equal to 35 find the value of a cube plus b cube plus c cube - 3abc ​

Answers

Answered by yuvraj309644
5

answer is 108.

I hope It will help you.

plzz like and mark as brainliest answer.

Attachments:

yuvraj309644: am I correct.
vibhanshu8441: yes I verified
yuvraj309644: can you mark as brainliest answer
vibhanshu8441: marked bro
yuvraj309644: thanks bhai
vibhanshu8441: koi bat nahi
yuvraj309644: class 9 chapter 2
vibhanshu8441: is matter around us
yuvraj309644: maths
Answered by Anonymous
12

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\boxed{\bf{{a}^{3} +  {b}^{3} +  {c}^{3} - 3abc = 108}}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

Given :- a + b + c = 9, a² + b² + c² = 35

To find :- a³ + b³ + c³ - 3abc

Solution :-

First we need to know the value of ab + bc + ca

a + b + c = 9

By squaring on both the sides,

 {(a + b + c)}^{2} =  {9}^{2}

We know that, (x + y + z)² = x² + y² + z² + 2(xy + yz + xz)

Here x = a, y = b, z = c

By substituting the values in the identity we have,

 {a}^{2} +  {b}^{2} +  {c}^{2} + 2(ab + bc + ac) = 81

( {a}^{2} +  {b}^{2} +  {c}^{2}) + 2(ab + bc + ac) = 81

35 + 2(ab + bc + ca) = 81

[Since a² + b² + c² = 35]

2(ab + bc - ac) = 81 - 35

ab + bc +ac =  \dfrac{46}{2}

ab + bc + ac = 23...(1)

We know that x³ + y³ + z³ - 3xyz = {x + y + z}{x² + y² + z² - (xy + yz + xz)}

Here x = a, y = b, z = c

By substituting the values in the identity we have,

 {a}^{3} +  {b}^{3} +  {c}^{3} - 3abc =  (a + b + c)( {a}^{2} +  {b}^{2} +  {c}^{2} - (ab + bc + ac))

 {a}^{3} +  {b}^{3} +  {c}^{3} - 3abc =   9(( {a}^{2} +  {b}^{2} +  {c}^{2}) - 23)

[Since Given that a + b + c = 9 and ab + bc + ac = 23]

 {a}^{3} +  {b}^{3} +  {c}^{3} - 3abc =9(35 - 23)

 {a}^{3} +  {b}^{3} +  {c}^{3} - 3abc = 9(12)

 {a}^{3} +  {b}^{3} +  {c}^{3} - 3abc = 108

\boxed{\bf{{a}^{3} +  {b}^{3} +  {c}^{3} - 3abc = 108}}

\mathfrak{\large{\underline{\underline{Identities\:Used:-}}}}

(x + y + z)² = x² + y² + z² + 2(xy + yz + xz)

x³ + y³ + z³ - 3xyz = {x + y + z}{x² + y² + z² - (xy + yz + xz)}

\mathfrak{\large{\underline{\underline{Extra\:Information:-}}}}

1] (x + y)² = x² + y² + 2xy

2] (x - y)² = x² + y² - 2xy

3] (x + y)(x - y) = x² - y²

4] (x + a)(x + b) = x² + (a + b)x + ab

5] x³ + y³ = (x + y)(x² - xy + y²)

6] x³ - y³ = (x - y)(x² + xy + y²)

7] (x + y)³ = x³ + y³ + 3xy(x + y)

8] (x - y)³ = x³ - y³ - 3xy(x - y)


DhanyaDA: great answer bro
Anonymous: :-)
DhanyaDA: ^_^
Anonymous: tysm
DhanyaDA: ♥♥
Similar questions