Math, asked by khushisongara, 1 year ago

If x^²+1/2x^²=27 find x + 1/x​

Answers

Answered by student00001
1

your answer mate

just expand, rearrange n substitute,!

(x−1x)2

=x2−2⋅x⋅1x+(1x)2

=x2−2+(1x)2

=x2+1x2−2

since we have the value of x2+1x2 as 27,

=27−2

=25

⇒(x−1x)2=25

⇒x−1x=±5

Hope it's helpful for you mate

please follow me

And please mark it as a brainlist

Answered by Anonymous
15

\bold{Correct\: Question:}

{x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} }  \:  =  \: 27

Solution:

{x}^{2} \: + \: \dfrac{1}{{x}^{2}} \: = \: 27

We know that..

a² + b² = (a + b)² - 2ab

{ \bigg(x \: + \: \dfrac{1}{x} \bigg)}^{2} - 2{ \cancel{x}} \: \times \: \dfrac{1}{ \cancel{x}}\:=\:27

{ \bigg(x \: + \: \dfrac{1}{x} \bigg)}^{2} - 2\:=\:27

{ \bigg(x \: + \: \dfrac{1}{x} \bigg)}^{2} = 27\:+\:2

{ \bigg(x \: + \: \dfrac{1}{x} \bigg)}^{2} = 29

x \: + \: \dfrac{1}{x} = \sqrt{29}

_______________________________

 x \: + \: \dfrac{1}{x} = \sqrt{29}

___________ [ANSWER]

_______________________________

Similar questions