answer with photos pls
Answers
Question : If 3x - 2y = 11 and xy = 12, find the value of 27x³ - 8y³.
Answer:
Step-by-step explanation:
3x - 2y = 11 .... (i)
xy = 12 .... (ii)
On cubing both sides equation (i) -
(3x - 2y)³ = (11)³
⇒ (3x)³ - (2y)³ - 3 * 3x * 2y (3x - 2y) = 1,331
[ ∵ (a - b)³ = a³ - b³ - 3ab(a - b)]
⇒ 27x³ - 8y³ - 18 xy (11) = 1,331
⇒ 27x³ - 8y³ - 18 * 12 * 11 = 1,331
⇒ 27x³ - 8y³ - 2,376 = 1,331
⇒ 27x³ - 8y³ = 1,331 + 2,376
⇒ 27x³ - 8y³ = 3,707
Hence, the answer is 3,707.
_________________________________
- (x + y)³ = x³ + y³ + 3xy(x + y)
- (x - y)³ = x³ - y³ - 3xy(x - y)
- (x + y)² = x² + 2xy + y²
- (x - y)² = x² - 2xy + y²
:
Given : 1) 3x - 2y = 11
2) xy = 12
To find : 27x³ - 8y³
Solution :
3x - 2y = 11
By cubing on both the sides
[ Since (a - b)³ = a³ - b³ - 3ab(a - b) ]
Here a = 3x, b = 2y
By substituting the values
[Since Given that (3x - 2y) = 11]
[Since Given that xy = 12]
(a - b)³ = a³ - b³ - 3ab(a - b)
What is an Identity ?
An equation is called an identity if it is satisfied by any value that replaces its variables.
1] (x + y)² = x² + 2xy + y²
2] (x - y)² = x² - 2xy + y²
3] (x + y)(x - y) = x² - y²
4] (x + a)(x + b) = x² + (a + b)x + ab