Math, asked by manpreetkaursonia202, 3 months ago

answers of all questions with full working correctly​

Attachments:

Answers

Answered by Anonymous
22

\large\sf\underline{Question\:1\::}

  • Divide the sum of \sf\:\frac{65}{12} and \sf\:\frac{12}{7} by their difference .

\large\sf\underline{Solution\::}

\small{\mathfrak{1^{st}\:step\:-}}

Sum of \sf\:\frac{65}{12} and \sf\:\frac{12}{7} .

\sf\longmapsto\:\frac{65}{12} + \frac{12}{7}

  • LCM of 12 and 7 = 87

\sf\longmapsto\:\frac{(65 \times 7)+(12 \times 12)}{84}

  • Multiplying the terms in numerator

\sf\longmapsto\:\frac{455+144}{84}

  • Adding the terms in numerator

\sf\longmapsto\:\frac{599}{84}

\small{\mathfrak{2^{nd}\:step\:-}}

Difference of \sf\:\frac{65}{12} and \sf\:\frac{12}{7} .

\sf\longmapsto\:\frac{65}{12} - \frac{12}{7}

  • LCM of 12 and 7 = 87

\sf\longmapsto\:\frac{(65 \times 7)-(12 \times 12)}{84}

  • Multiplying the terms in numerator

\sf\longmapsto\:\frac{455-144}{84}

  • Subtracting the terms in numerator

\sf\longmapsto\:\frac{311}{84}

\small{\mathfrak{3^{rd}\:step\:-}}

Dividing the sum of \sf\:\frac{65}{12} and \sf\:\frac{12}{7} by their difference .

  • Sum of\sf\:\frac{65}{12} and \sf\:\frac{12}{7} = \sf\:\frac{599}{84}

  • Difference of \sf\:\frac{65}{12} and \sf\:\frac{12}{7} = \sf\:\frac{311}{84}

Dividing them :

\sf\longmapsto\:\frac{599}{84} \div \frac{311}{84}

\sf\longmapsto\:\frac{599}{\cancel{84}} \times \frac{\cancel{84}}{311}

\small{\underline{\boxed{\mathrm\pink{⟼\:\frac{599}{311}}}}}

_________________________

\large\sf\underline{Question\:2\::}

  • The sum of the addictive inverse and multiplicative inverse of \sf\:\frac{1}{5} is ?

\large\sf\underline{Solution\::}

  • Addictive inverse of \sf\:\frac{1}{5} = \sf\:\frac{-1}{5}

  • Multiplicative inverse of \sf\:\frac{1}{5} = \sf\:5

Their sum :

\sf\longmapsto\:\frac{-1}{5}+5

  • LCM of 5 and 1 = 5

\sf\longmapsto\:\frac{-1+(5 \times 5)}{5}

  • Multiplying the terms in numerator

\sf\longmapsto\:\frac{-1+25}{5}

  • Subtracting the terms in numerator

\small{\underline{\boxed{\mathrm\pink{⟼\:\frac{24}{5}}}}}

‎ _________________________

\large\sf\underline{Question\:3\::}

  • The product of two rational numbers is \sf\:\frac{-28}{81} . If obe of the number is \sf\:\frac{14}{27} , then find the other number.

\large\sf\underline{Solution\::}

Let the other number be x.

So according to the question :

\sf\longmapsto\:\frac{14}{27} \times x =\frac{-28}{81}

\sf\longmapsto\:\frac{14x}{27} =\frac{-28}{81}

  • Cross multiplying

\sf\longmapsto\:14x \times 81 =-28 \times 27

  • Multiplying the terms

\sf\longmapsto\:1134x  =-756

  • Transposing 1134 to the other side

\sf\longmapsto\:x  =\cancel{\frac{-756}{1134}}

\small{\underline{\boxed{\mathrm\pink{⟼\:x\:=\frac{-2}{3}}}}}

‎ _________________________

\large\sf\underline{Question\:4\::}

  • If a = 7 , then the value of \sf\:-[\frac{1-2a}{a-5}] is ______

\large\sf\underline{Solution\::}

\sf\longmapsto\:-[\frac{1-2a}{a-5}]

  • Substituiting the value of a as 7

\sf\longmapsto\:-[\frac{1-2(7)}{7-5}]

  • Simplifying the fraction

\sf\longmapsto\:-[\frac{1-14}{2}]

\sf\longmapsto\:-[\frac{-13}{2}]

\small{\underline{\boxed{\mathrm\pink{⟼\:\frac{13}{2}}}}}

‎ _______________________

\large\sf\underline{Question\:5\::}

  • The multiplicative inverse of \sf\:\frac{-a}{b} is ___

\large\sf\underline{Solution\::}

Multiplicative inverse of a number is a number which when multiplied by the original number given 1 .

So multiplicative inverse of \sf\:\frac{-a}{b} is :

\small{\underline{\boxed{\mathrm\pink{\frac{-b}{a}}}}}

Since :

\sf\longmapsto\:\frac{-a}{b} \times \frac{-b}{a}

  • Multiplying the fraction

\sf\longmapsto\:\cancel{\frac{ab}{ab}}

\sf\longmapsto\:1

________________________

\large\sf\underline{Question\:6\::}

  • Which of the following properties of rational numbers is given below ?

\sf\:\frac{7}{4} \times (\frac{-8}{3} +\frac{-13}{12})=\frac{7}{4} \times \frac{-8}{3} +\frac{7}{4} \times \frac{-13}{12}

\large\sf\underline{Solution\::}

So the given rational number indicates :

\small{\underline{\boxed{\mathrm\pink{Distribution\:of\:multiplication\:over\:addition.}}}}

_________________________

\large\sf\underline{Question\:7\::}

  • If \sf\:x = \frac{2+3 \times 2}{-5} , then find the value of | - x| .

\large\sf\underline{Solution\::}

  • Simplifying the value of x

\sf\longmapsto\:x = \frac{2+6}{-5}

\sf\longmapsto\:x = \frac{8}{-5}

So | - x| =\small{\underline{\boxed{\mathrm\pink{\frac{8}{5}}}}}

Similar questions