Math, asked by anandsahu18072003, 3 months ago

Any can integrate this problem​

Attachments:

Answers

Answered by Asterinn
7

 \rm \large \longrightarrow \displaystyle \int \:  \rm \dfrac{ \rm 10 {x}^{9}  +  {10}^{x}  \: log(10)  }{  \rm{x}^{10} +  {10}^{x}  }  \: dx \\  \\  \\  \rm  \: let \: \:  \:  \rm{x}^{10} +  {10}^{x} = t \\   \\ \rm \:( 10 {x}^{9}  +  {10}^{x}  \: log10 \: ) dx= dt  \\ \\   \\  \rm \large \longrightarrow \displaystyle \int \:  \rm \dfrac{  dt}{ t  }  \\   \\ \\  \rm \large \longrightarrow \displaystyle \:  \rm \:  log(t)  + c\\   \\ \\  \rm \large \longrightarrow \displaystyle \:  \rm \:  log({x}^{10} +  {10}^{x})  + c

Answer :-

log(x¹⁰+ 10ˣ) + c

Let's see how we differentiated 10ˣ while solving the above question :-

 \rm let \:  \: y =   {10}^{x} \\  \\   \rm \rightarrow log(y)  = log({10}^{x}) \\  \\ \rightarrow  \rm \: log(y)  =x \:  log({10})\\  \\ \rightarrow  \rm \:  \frac{1}{b}     \times \frac{dy}{dx} = log({10})\\  \\ \rightarrow  \rm \:   \frac{dy}{dx} =b \times  log({10})\\  \\ \rightarrow  \rm \:   \frac{dy}{dx} = {10}^{x}   \: log({10})

Similar questions