Math, asked by archie40, 1 year ago

any one can solve this ...​

Attachments:

Answers

Answered by Anonymous
8

Question :-

 \sf solve \:  log_{x}2 =  - 1

Solution :-

 \sf log_{x}2 =  - 1

Write it in exponential form

 \sf  \implies x^{ - 1} = 2

 \boxed{ \bf \because If \:  log_{a}N = x \: then \:  a^x =N}

 \sf  \implies  \dfrac{1}{x^1}  = 2

 \boxed{ \bf \because  a^{ - n} =  \dfrac{1}{a^n } }

 \sf  \implies  \dfrac{1}{x}  = 2

Reciprocal on both sides

 \sf  \implies  \dfrac{x}{1}  = \dfrac{1}{2}  \\  \\  \\  \sf \implies x = \dfrac{1}{2}  \\  \\  \\  \bf \therefore x =  \dfrac{1}{2}

Verification :-

 \sf  log_{x}2 =  - 1 \\  \\  \\  \sf \implies log_{ \frac{1}{2} }2 =  - 1 \\  \\  \\  \sf \implies  \left( \dfrac{1}{2} \right)^{ - 1}  = 2 \\  \\  \\  \sf \implies  2^1 = 2 \\  \\  \\  \sf \implies 2 = 2

Laws of exponents used :-

\tt  \longrightarrow a^{ - n} =  \dfrac{1}{a^n }

Similar questions