Math, asked by Ankit056311, 10 months ago

any one solve this question and give solutions​

Attachments:

Answers

Answered by abhi14125
1

Answer:

Step-by-step explanation:

Please make me brainliest

Attachments:
Answered by codiepienagoya
0

Proving "both equation is same".

Step-by-step explanation:

\ Given \ value:\\\\(1+ \cot \theta - \ cosec \theta) (1+ \tan \theta + \sec \theta) = 2\\\\\ Solution:\\\\(1+ \cot \theta - \ cosec \theta) (1+ \tan \theta + \sec \theta) = 2\\\\\ Solve \ L.H.S \ part  \\\\ \rightarrow (1+ \frac{\cos \theta }{\sin \theta}- \frac{1}{\sin \theta}) (1+ \frac{\sin \theta}{\cos \theta}+ \frac{1}{\cos \theta}) \\\\ \rightarrow (\frac{\sin \theta+\cos \theta - 1 }{\sin \theta}) (\frac {\cos \theta+\sin \theta+1}{\cos \theta}) \\\\

\rightarrow (\frac {(\sin \theta+\cos \theta - 1 )(\cos \theta+\sin \theta+1)}{\sin \theta \cos \theta}) \\\\

\rightarrow (\frac {(\sin \theta+\cos \theta - 1 )(\cos \theta+\sin \theta+1)}{\sin \theta \cos \theta}) \\\\\ formula: \\\\ \ a^2-b^2 = (a+b) (a-b) \\\\ \rightarrow (\frac {(\sin \theta+\cos \theta - 1)(\sin \theta+\cos \theta+1)}{\sin \theta \cos \theta}) \\\\\rightarrow \frac {(\sin \theta+\cos \theta)^2 -(1)^2}{\sin \theta \cos \theta} \\\\\rightarrow \frac {(\sin^2 \theta+\cos^2 \theta+ 2\sin \theta \cos \theta) - 1}{\sin \theta \cos \theta} \\\\

\rightarrow \frac {( 1+ 2\sin \theta \cos \theta - 1)}{\sin \theta \cos \theta} \\\\\rightarrow \frac {2\sin \theta \cos \theta }{\sin \theta \cos \theta} \\\\\rightarrow 2 \\\\

L.H.S = R.H.S

Learn more:

  • Verify: https://brainly.in/question/16419183
Similar questions