any positive odd integer cannot be of form
a) 8q+1 b) 8q+3 c) 8q+6 d)8q+5
plss ans fast
Answers
Answered by
11
Hey Here is Sol :
let us start with with taking a, where a is a positive odd integer.
We apply the division algorithm with a and b = 8.
since 0 ≤ r < 8 the possible remainders are 0,1,2,....7.
That is a can be 8q or8q+1 or 8q+2 or 8q+3 or 8q+4or 8q+5 or 8q+6 where q is quotient.
How ever since a is odd a cannt be 8q or 8q+2 or 8q+4 (since they are divisible by 2).
There fore, any odd integer is of the form 8q+1, 8q+3, 8q+5 or 8q+7.
Hope u like it
please mark as brainliest !!
let us start with with taking a, where a is a positive odd integer.
We apply the division algorithm with a and b = 8.
since 0 ≤ r < 8 the possible remainders are 0,1,2,....7.
That is a can be 8q or8q+1 or 8q+2 or 8q+3 or 8q+4or 8q+5 or 8q+6 where q is quotient.
How ever since a is odd a cannt be 8q or 8q+2 or 8q+4 (since they are divisible by 2).
There fore, any odd integer is of the form 8q+1, 8q+3, 8q+5 or 8q+7.
Hope u like it
please mark as brainliest !!
Answered by
5
Step-by-step explanation:
a = bq+r where, 0 <= r < b
so all possible values of a if b = 8
a = 8q+0, 8q+1, 8q+2, 8q+3, 8q+4, 8q+5, 8q+6, 8q+7
as it is asked for all odd values:
8q+0, 8q+2, 8q+4, 8q+6 will not be included as all these are even values
so answer will be:
a = 8q+1, 8q+3, 8q+5, 8q+7
Similar questions
English,
8 months ago
Social Sciences,
8 months ago
Physics,
1 year ago
Physics,
1 year ago
Social Sciences,
1 year ago